Corporate resiliency and the choice between financial and operational hedging

Viral V. Acharya,¹ Heitor Almeida,² Yakov Amihud,¹ and Ping Liu³

¹NYU Stern School of Business, ²UIUC Gies College of Business, ³Purdue U Krannert School of Management

כנס האגודה הישראלית לכלכלה 2024

The paper in a nutshell:

We commonly study the **risk** of **financial default** on **debt contracts** with **lenders**. **We add**:

There is **risk** of **default** on **<u>delivery contracts</u>** of goods and services to **customers**.

We study how the firm manages these **two commitments** and **default risks**, given their predetermined **borrowing** and **delivery** contracts.

<u>We propose</u>: there's a **tradeoff** between **financial hedging** and **operational hedging** for **financially constrained** firms.

Corporate activities are often **disrupted** by exogenous **shocks**.

During the Covid-19 pandemic...

- ... inventories were depleted
- ... supply chains were disrupted

Firms **failed to deliver** the merchandise and services that they **committed** to supply. <u>Questions</u>:

> How is corporate resiliency – the ability to withstand shocks and deliver the goods – affected by financial default risk?

> How does access to financing affect corporate resiliency?

The **macro**economic consequence:

Does over-leveraging of corporation hurt the resiliency of the economy?

The firm's tradeoff:

> Use cash to hedge against operational default—failure to deliver on customers' contracts—by investing in excess inventory, spending on supply chain diversification, maintaining backup capacity, etc., or

> Hoard cash to hedge against financial default in case of a negative cashflow shock.

We propose:

<u>Higher financial</u> default risk (or higher credit spread) \rightarrow <u>lower</u> <u>operational</u> hedging. Firms shift cash to avert financial default, depending on the cost of operational default.

Main testable result:

→ A higher credit spread (on debt) → a higher operational spread, measured by
 Markup = [price – marginal cost (MC)], because MC rises with operational hedging.

However, if the firm can **pledge** some **future cashflows** (from delivering the goods), **it can borrow** (get a loan to ride out a liquidity shortfall), thus **lowering default risk**.

 \rightarrow Then, the firm will **spend more** on **operational hedging** ...

which in turn increases pledgeability and facilitates borrowing with lower risk.

Prediction:

- Lower pledgeability (= greater financial constraint),
 - → stronger tradeoff between financial hedging and operational hedging.
 - → a more positive relationship between credit spread and operational spread.

In a liquid, well functioning capital market, there's **high** pledgeability and a **weaker tradeoff**.

We study these **tradeoffs** – **theoretically** and **empirically**.

The timeline of the model

At t = 1, a shock u to cash flow and production capacity at t = 2 (e.g., the Covid-19 shock.)

 $\delta(u)$ represents operational risk, decreasing ($\delta'(u) < 0$) and convex in u.

It reduces productive capacity in case of a shock that lowers u and reduces output $I \rightarrow (1 - \delta(u)) I$

 $\lambda \in (0, 1)$ is the **loss** in franchise value when the firm fails to deliver.

The firm maximizes expected shareholder value, considering the loss from operational and financial defaults.

Optimal hedging

Firm maximizes expected shareholder value after considering the loss from operational and financial default.

The optimal choice of **operational** hedging *i* depends on the size of **financial** and **operational** default boundaries.

There are **three** cases, for a given *F* and the distribution of the shock *u*:

u_F = **financial** default **threshold** = minimum shock that enables to **repay** F in full and avoid financial default.

*u*₀ = operational default threshold = minimum shock that enables to deliver its contractual amount of goods and avoid operational default:

First-best (benchmark) case, $u_F = 0$: No liquidity risk. Debt is irrelevant when determining operational hedging *i*.

In general: Smaller **u** – more cash or investment is needed to avoid financial default.

Second-best case: <u>High F</u>. $0 < u_0 \le u_F$: Financial default is greater. Need more cash to avoid financial default. Low operational hedging. (Operational default is less relevant when determining operational hedging *i*.)

<u>Second-best case</u>: <u>Low F</u> . $0 < u_F < u_O$: Focus of our paper . Operational default is the greater threat.

Optimal operational hedging *i*^{*} decreases in F.

The firm's objective functions in three cases

First best

$$\max_{i} \left\{ \int_{0}^{\infty} \left[\frac{x_{0} + \bar{x}_{1} + u + x_{2}}{\cosh \text{ from assets}} - \frac{K(l+i)}{\text{ production cost}} + \frac{p[(1 - \delta(u))l + i]}{\text{ income from customer contract}} \right] g(u) du$$
$$- \int_{0}^{u_{0}} \lambda x_{2}g(u) du \\\text{operational default cost} \right\}$$

• Second-best: $(u_{F} \ge u_{O})$
$$\max_{i} \left\{ \underbrace{\int_{u_{F}}^{\infty} \left[(u - u_{F}) + p[(1 - \delta(u))l + i] + x_{2} \right] g(u) du}_{E} \right\}$$

• Second-best: $(u_F < u_O)$

$$\max_{i}\left\{E-\int_{u_{F}}^{u_{O}}\lambda x_{2}g\left(u\right)du\right\}$$

Operational default: at t = 2, the firm **defaults** on its **customer** contract if $u < u_0$ (= operational default threshold)

$$\underbrace{(1 - \delta(u_O))I + i}_{\text{production+inventory}} = \underbrace{I}_{\text{commitment}}$$

In operational default, the firm loses a fraction λ of its franchise value x_2 , retaining only $(1 - \lambda)x_2$,

>>The operational default threshold u_0 decreases in operational hedging, *i*. (recall, $\delta'(u) < 0$)

<u>Financial default</u>: at t = 1, the firm **defaults** on its **financial** obligation if $u < u_F$ (= financial default threshold)

$$\underbrace{x_0 + \bar{x}_1 + u_F}_{\text{cash flows}} - \underbrace{\mathcal{K}(l+i)}_{\text{production cost}} = \underbrace{\mathcal{F}}_{\text{debt}}$$

In **financial default** in t = 1, the firm loses the cashflow from customer contracts: $p[(1 - \delta(u)) I + i] +$ the franchise value, x_2 .

>> The financial default threshold u_F increases – greater financial default risk – in operational hedging *i*. Diverting cash to operational hedging (higher *i*) \rightarrow increase in financial default likelihood \rightarrow higher credit spread. Credit spread = (*F* / Market value of debt) -1.

Operational spread or **Markup** = [p - K'(l + i)]. It **decreases** in *i* since K'(l + i) > 0.

 \rightarrow Higher Credit spread (or risk) \rightarrow an incentive to reduce operational hedging $i \rightarrow$ higher Markup.

Since financial default occurs when $x_0 + x_1 + u < F + K(I + i)$, then...

Higher *F* (face value of debt) \rightarrow higher $u_F \rightarrow$ higher likelihood of $u < u_F$ (= default)

- \rightarrow operational default at *t* = 2 is **less** relevant
- \rightarrow lower operational hedging (lower *i*) & higher operational spread [*p K'*(*l* + *i*)]
- \rightarrow higher op. spread.

With lower *F*, $u_F < u_O$, and the firm considers the tradeoff between financial hedging and operational hedging.

At the margin, **operational** hedging *i* ...

- Raises the expected cost of financial default by raising the financial default boundary, u_F.
- Lowers the expected cost of operational default by lowering operational default boundary, uo.
- → Higher optimal *i* when $u_F < u_O$ than when $u_F \ge u_O$.

When **F** is sufficiently low, operational default risk is the firm's main concern \rightarrow higher *i*.

In general,...

the first-order condition says that the firm chooses the hedging policy *i** such that the **markup** equals the marginal increase of the expected financial default cost.

<u>Model-implied relationship between credit spread and markup</u> **Credit spread** = (*F* / Market value of debt) -1 = **bond yield** (benchmark = **0**) **Operational spread** or **Markup** = [p - K'(l + i)]. **Decreases** in *i* since K'(l + i) > 0. → Higher Credit spread → lower operational hedging *i*, lower K'(l + i)→ higher Markup.

If the firm can <u>pledge to creditors</u> at t = 1 a fraction τ from period-2 cash flow due to contract settlement, it will **borrow** in Period <u>1</u> if there is a **shortfall**.

- → Lower financial default risk,
- \rightarrow Increased operational hedging.
- \rightarrow Lower pledgeability (\underline{r}) \rightarrow lower optimal operational hedging \rightarrow higher Markup.
- → Larger effect of Credit spread on Markup (operational spread).

Empirically: lower pledgeability (**7**) means higher financial constraint.

Prediction: Greater **financial-constraint** → a **stronger tradeoff** between **Markup** and **credit spread**.

The big picture: A well-functioning capital market improves economic resiliency.

The effect of **pledgeability** – **higher** <u>r</u> – on optimal operational hedging, *i*, and the **Credit spread**-**Operational spread** relationship (employing numerical analysis)

Operational hedging *i* decreases with debt level *F*

→ Operational spread increases in debt level F and in credit spread.

This relationship is **stronger** for **lower pledgeability** (**7**) or **greater financial constraint**.

Empirical research questions:

(1) Does higher credit spread lower operational hedging → higher operation spread?

(2) Is relationship (1) **stronger** for **financially-constrained** firms? Or in times of **illiquid markets?**

We proxy a higher **credit spread** by –(Z-score),

using Altman's (1968) Z-score, which declines with a higher default probability.

Operational hedging is measured by **Markup** = (Sales-Cost of Goods Sold) / Sales. Lower $i \rightarrow \text{lower } K'(l + i) \rightarrow \text{higher operational spread} = [p - K'(l + i)], \text{ proxied by the Markup.}$

Two hypotheses:

Markup increases in **–(Z-score)**, and **more** so for **financially-constrained** firms, and when **markets** are **illiquid**.

Data: From COMPUSTAT. Quarterly data from 1973 to April 2020.

- Exclude firms in the financial and utilities industries (SIC codes 6000-6999, 4900-4949).
- Exclude firm-quarters for firms involved in major mergers (COMPUSTAT footnote code AB).

We calculate **Z-score**, **Inventory**/Sales ratio, and the <u>control variables</u>: (1) Q, (2) cash holdings, (3) cash flow, (4) tangible assets, (5) size, **(6-8) market power** measures: (i) top 3 industry seller dummy, (ii) sales/Industry sales, (iii) Herfindahl index. (Herfindahl is eliminated when using Ind*Yr-Qtr FE.)

Supply chain data:

From **Factset** Revere Relationship database: **relationship-level data** between firms, starting on 4-2003.

- For each relationship, it contains...
- Identities of the related parties
- Type of the relationship
- Firms' geographic origins (country and state/province combination)

<u>Test 1</u>: Is Markup = (Sales-CGS)/Sales a valid measure of the Operational Spread, [p - K'(I + i)]? Does it decline in the firm's operational hedging activity? (Because marginal costs incease.)

We use two measures of operational hedging activity:

1) **Inventory**, using Inventory/Sales ratio. Higher inventory \rightarrow more operational hedging.

2) Supply chains hedging: the first principal component score from a PCA using the variables:

- (i) ln(1 + number of **suppliers**)
- (ii) ln(1 + number of supplier **regions**)
- (iii) ln(1 + number of **out-of-region** suppliers).

The PCA is done for each quarter.

Validation test (1):

Does Markup decline in our measures of operational hedging? -Yes.

	Markup	CGS/Assets			
Supply chain hedging	-0.0050 (2.17)	0.00075 (2.58)			
Inventory/Sales	0.041 (3.15)				
The model includes: Control Variables (incl. two market-power variables), Firm FE, Year*Year-qtr FE					
Number of observations	114,887	114,858			
R ²	0.754	0.969			

Markup declines and CGS/Assets increases with higher spending on supply chain hedging and inventory.

(The CGS/Assets model includes Sales/Assets as control.)

<u>Conclusion</u>: <u>Markup</u> is a reasonable <u>summary measure</u> of the <u>firms' operational hedging</u> <u>activities</u>.

Validation test (2)

In <u>recessions</u>, do our measures of **operational hedging <u>mitigate</u>** the negative shocks to <u>ΔSales/Assets</u>? –<u>YES.</u> A cross-firm regression:

ΔSales/Assets = (average during the recession qtrs) – (average of 8 qtrs beforehand, skipping 4 pre-recession qtrs) on <u>pre-recession</u> operational hedging variables (inventory & supply chain hedging).

Included: control variables and FF-48 industry FE.

NBER Recessions	Inventory/Sales	Supp Chain Hedg. PCA
1973Q4 – 1975Q1	0.032 (2.00)	
1979Q4 – 1980Q2	0.015 (2.14)	
1981Q2 – 1982Q2	0.010 (1.43)	
1989Q4 – 1991Q1	0.016 (4.04)	
2001Q1 – 2001Q3	0.018 (4.50)	
2007Q4 - 2009Q2	0.011 (2.20)	0.018 (1.96)

Conclusion: Pre-recession spending on operational hedging mitigated the negative shock to sales.

Main test:

Does operational spread, Markup, increase in the Credit spread or -(Z-score)? - Yes.

<u>Our prediction</u>: Greater cash needs \rightarrow **lower** operational hedging \rightarrow **higher** [p - K'(l + i)].

	Markup	CGS/Assets
-(Z-score)	0.0029 (5.47)	-0.00054 (6.83)
Control variables		Yes
Firm FE		Yes
Industry*Year-qtr FE		Yes
Number of observations	564,418	561,177
R ²	0.634	0.951

(The CGS model includes Sales/Assets.)

The **control** variables include **market power** variables; Industry FEs also account for differences in market power by industry.

Does Operational Hedging increase in credit risk during NBER recessions? -Yes.

	Markup	CGS/Assets	Inventory/ Assets	SCH
-(Z-score)*Recession	0.0016 (3.14)	-0.00025 (2.50)	-0.0016 (3.20)	-0.00072 (0.31)
-(Z-score)	0.0028 (5.38)	-0.00053 (6.88)	-0.0027 (5.74)	0.012 (6.00)
The models include: Control Variables (incl. Market Power), Firm FE, Industry*Year-qtr FE				
Number of observations	554,348	551,691	543,351	112,336 (one episode)
R ²	0.636	0.950	0.730	0.862

(The CGS/Assets model includes Sales/Assets as control.)

There are 6 recessions between 1973 and 2009. SCH has only one recession (2008-9).

<u>Markup</u> increases and CGS/Assets declines in credit spread by more in times of financial constrains (recessions).

Conclusion: Operational hedging declines when firms become financially constrained.

It is not Market Power that causes the positive operational spread-Credit spread relationship. Chevalier & Scharfstein (1994), Gilchrist et al., 2017): Firms with market power (MP)...

... raise prices and **Markup** when they have **high credit risk**, especially in recessions.

They raise **short-run profit** at the cost of hurting their future market share and long-term profitability. <u>Their prediction</u>: A **stronger positive** effect of –(Z-score) on Markup for firms with **MP**.

The evidence is **not consistent** with the **MP-based** theory.

Markup		
<u>MP = Top 4 industry sellers</u>	<u>MP = Sales/Industry sales</u>	
-0.00034 (0.14)	0.00048 (0.02)	
-0.0027 (2.25)	-0.075 (3.75)	
0.0016 (3.13)	0.0017 (3.20)	
0.0028 (5.38)	0.0028 (5.38)	
	Mar <u>MP = Top 4 industry sellers</u> -0.00034 (0.14) -0.0027 (2.25) 0.0016 (3.13) 0.0028 (5.38)	

The model includes: Control variables, incl. MP variables, Firm FE, Industry*Year-qtr FE

Financial constraints and the Markup-Credit spread relationship - the 2008 Great Financial Crisis

The **2008** crisis \rightarrow negative shock to τ (pledgeability) \rightarrow stronger Markup-Credit spread relationship

Following Chodorow-Reich (2014), we use **firms' exposure to lenders** affected by the crisis. Data on bank lenders of our sample firms: from the LPC-Dealscan database.

The impact of the subprime mortgage crisis on lenders' abilities to extend credit to the borrowers:

(1) **Changes in Ioan supply** for a firm's lenders between the 9-month period from 10-2008 to 6-2009, and average of the 18-month period containing 10-2005 to 6-2006 and 10-2006 to 6-2007.

(2) Bank's **exposure to Lehman** Brothers through the **fraction** of a bank's syndication portfolio where Lehman Brothers had a lead role.

(3) Banks' **exposure to toxic mortgage-backed securities**: the **correlation** between banks' daily stock return and the return on the ABX AAA 2006-H1 index.

Average crisis exposure measure over all lenders of the firm, weighted by loan size.

Was there a stronger positive effect of Credit spread (-Z score) on Markup

for firms affected by the 2008 Great Financial Crisis? - YES

Two years (8 qtrs) **before** & **after** the **Lehman crisis**: Q3-2006—Q2-2008, Q1-2009—Q4-2020. The –(**Z**-score) is for the end of **2007**.

	Markup		
Lender's financial exposure→	<u>%# loan reduction</u>	<u>Lehman</u> <u>exposure</u>	<u>ABX exposure</u>
–(Z-score)*Lender <mark>exposure</mark>	0.086 (2.53)	0.160 (2.22)	0.084 (3.11)
Lender exposure	-0.699 (1.54)	-0.969 (1.41)	-0.902 (2.20)

The model includes: Control variables, Control vars*Lender exposure, Firm FE,

Industry*Year-quarter FE.

There are 20 firm-quarters.

<u>Conclusion</u>: A more **positive Markup-Credit spread relationship** for firms that became financially **constrained**.

Consistent with theory.

Was there a stronger negative effect of Credit spread (-Z score) on CGS/Assets for firms affected by the 2008 Great Financial Crisis? -- <u>YES</u>

	<u>CGS</u> /Assets		
Lender's financial exposure→	<u>%# loan reduction</u>	<u>Lehman</u> exposure	<u>ABX exposure</u>
–(Z-score)*Lender <mark>exposure</mark>	-0.030 (-2.73)	-0.058 (-2.76)	-0.027 (-3.38)
Lender exposure	0.017 (0.10)	-0.149 (0.67)	0.019 (0.15)

The model includes: Control variables, Control vars*Lender exposure, Firm FE,

Industry*Year-quarter FE.

There are 20 firm-quarters

<u>Conclusion</u>: **CGS/Assets declined** for firms that became financially **constrained**

 \rightarrow cut in Operational Hedging (and other costs)

Parallel trend test:

The Markup-Credit spread relationship, conditional on lender exposure, around the 2008 crisis

The model includes (1) lender exposure, (2) control variables, (3) Controls*Lender exposure, (4) firm FE, (5) **Industry***Year-qtr FE.

	<u>%# loan reduction</u>	<u>Lehman exposure</u>	<u>ABX exposure</u> (residential mortg.)
-(Z-score)*LE ₋₄	0.013 (0.52)	0.068 (1.36)	0.014 (0.70)
-(Z-score)*LE ₋₃	-0.011 (-0.41)	-0.006 (-0.09)	-0.004 (-0.18)
-(Z-score)*LE ₋₂	0.023 (0.88)	0.078 (1.53)	0.034 (1.62)
-(Z-score)*LE ₋₁	0.029 (1.00)	0.101 (1.84)	0.036 (1.64)
-(Z-score)*LE ₊₁	0.060 (1.33)	0.132 (1.45)	0.062 (1.68)
-(Z-score)*LE ₊₂	0.123 (2.93)	0.244 (3.05)	0.117 (3.66)
-(Z-score)*LE ₊₃	0.135 (3.29)	0.272 (3.35)	0.128 (4.00)
-(Z-score)*LE ₊₄	0.086 (2.05)	0.180 (2.20)	0.093 (2.91)
-(Z-score)*LE ₊₅₊	0.083 (1.93)	0.170 (1.87)	0087 (2.56)

Drawing of the quarterly coefficients Markup on -Z score

Drawing of the quarterly coefficients Markup on -Z score

Conclusion

We study the **allocation** of **corporate liquidity** associated with the **tradeoff** between the need to reduce **financial risk** and **operational risk**.

Theoretically, this tradeoff is manifested in a positive relationship between

credit spread and operational spread, especially for financially-constrained firms.

Empirically, the evidence supports this tradeoff:

Greater financial risk reduces operational hedging, especially

- In episodes of low market liquidity (recessions)
- For firms that become financially-constrained firms (during the 2008-9 crisis)/

<u>The takeaway</u>: **Over-leveraging** and **illiquid capital markets hurt operational resiliency**, i.e., the ability to ride our **real shocks**.

Macroeconomic takeaways:

- **1. Over-leveraging reduces** the economy's **resilience** to operational shocks.
- 2. Over-leveraging and constrained capital → lower operational resiliency.
- 3. A liquid, well functioning capital market → higher pledgeability, weaker (or no) tradeoff,

→ greater resilience.

Indeed, the **increase in liquidity** during the **Covid-19** shock was a wise policy.

Future extension: Study the effects on stock returns.