

A Semi-Structural Model with Household Debt for Israel

Alex Ilek and Nimrod Cohen

22.6.2023

The 39th Annual Conference of the Israel Economic Association

Agenda

- Questions
- Stylized facts
- The Model
- Analysis
- Conclusions

Main questions

- We specify and calibrate a semi-structural DSGE model for Israel, which contains a financial friction in the households' credit market. Aim answering:
- What are the implications of the financial friction (and of macroprudential policy) on the economy?
- Should monetary interest rate react to financial variables, like credit spread or leverage?

STYLIZED FACTS & EMPIRICAL EVIDENCE FOR THE ISRAELI HOUSEHOLDS' CREDIT MARKET

Main Stylized facts for the Israeli households' credit market

- Borrowers are ~40% of the population.
- Households hold only domestic debt (~2/3 in mortgages).
- Positive relationship between credit spread and leverage.
 - Still valid after controlling for macroprudential measures.

Positive Leverage-Spread relationship (for Israel)

^{*} Leverage: **B**/**Y**

C

^{*} Spread: Mortgage weighted Interest Rate over capital market long term bonds (10 years)

Positive Leverage-Spread relationship (for Israel)

Average Mortgage Nominal Fixed Interest Rate, for various LTV

Positive Leverage-Spread relationship (for Israel)

Relationship between credit spread and mortgage leverage:

$$spread_{t}^{H} = -5.89 + \underbrace{0.07}_{(0.00)} Lev_{t}^{H} - \underbrace{0.16}_{(0.00)} \pi_{t}^{H} - \underbrace{0.06}_{(0.15)} \pi_{t-1}^{H} - \underbrace{0.07}_{(0.06)} \pi_{t-2}^{H} - \underbrace{0.06}_{(0.10)} \pi_{t-3}^{H}$$

- Adding macro-prudential measures by interaction term, (e.g., LTV and PTI restrictions, increasing provisions or capital requirements) : $\gamma Lev_t^H \cdot dum_t$
 - The interaction coefficient is positive and significant.
 - The leverage coefficient is still positive (smaller) and significant.
- This relation is robust to alternative specifications of spread and leverage, also when we control for (average) maturity of mortgages.
- For non-housing credit we do not find significant relationship (due to very short sample available).

THE MODEL

The Model

- Semi-structural DSGE model for Israel
 - Small open economy [Laxton et al. (2006), Chen Zion (2021)]
 - Two type of agents: Lenders & Borrowers (microfounded) [Benigno et al. (2020)]
 - Borrowers can borrow only domestically
 - Lenders can save domestically and abroad

The Economy

Phillips curve

$$\pi_t = A_{ld}^{\pi} \pi_{t+4}^{4q} + (1 - A_{ld}^{\pi}) \pi_{t-1}^{4q} + A^y \widehat{y}_{t-1}$$

$$+A_z^{\pi} \Delta z_t + A_{oil}^{\pi} \pi_t^{oil} + A_{oil,lag}^{\pi} \pi_{t-1}^{oil} + \varepsilon_t^{\pi}$$

UIP equation for real exchange rate

$$z_t = D_{zld}^z z_{t+1} + (1 - D_{zld}^z) z_{t-1} - (r_t - r_t^* - \Delta_t^{fx})$$

Country risk premia

$$\Delta_t^{fx} = \Delta z_t^n + (r_t^n - r_t^{nw}) + \varepsilon_t^{fx}$$

IS equation

$$\hat{y}_{t} = \beta_{yld}^{y} \hat{y}_{t+1} + (1 - \beta_{yld}^{y}) \hat{y}_{t-1} - \beta_{r}^{y} \hat{r}_{t-1} + \beta_{z}^{y} \hat{z}_{t-1} + \beta_{yw}^{y} \hat{y}_{t}^{w}$$

monetary stance

$$\widehat{r}_t = r_t - r_t^n$$

Benchmark Real IR

$$r_t^n = \alpha + \alpha_g^{NRI} g_{t+1}^n + \alpha_{g^w}^{NRI} g_{t+1}^w - \alpha_{\Delta}^{NRI} \widehat{\Delta}_t - \chi_{cb}^{NRI} \Delta \varepsilon_{t+1}^{cb}$$

+ Potential Growth + World economy

Contractionary effect

Credit Block

Leverage ratio

$$\widehat{lev}_t = \widehat{b}_t - \widehat{y}_t$$

Credit Block

Leverage ratio

Interest rate spread

Equation for spread

$$\widehat{lev}_t = \widehat{b}_t - \widehat{y}_t$$

$$\widehat{\Delta}_t = i_t^b - i_t$$

$$\widehat{\Delta}_t = \beta_{lev}^{\Delta} \widehat{lev}_t + \varepsilon_t^{\Delta}$$

Credit Block

Leverage ratio

Equation for spread

Borrowers Euler equation

$$\widehat{lev}_t = \widehat{b}_t - \widehat{y}_t$$

$$\widehat{\Delta}_t = i_t^b - i_t$$

$$\widehat{\Delta}_t = \beta_{lev}^{\Delta} \widehat{lev}_t + \varepsilon_t^{\Delta}$$

$$\hat{c}_{t}^{b} = \beta_{ld}^{c^{b}} \hat{c}_{t+1}^{b} + (1 - \beta_{ld}^{c^{b}}) \hat{c}_{t-1}^{b}$$

$$-\beta_r^{c^b}(\hat{R}_t^b - (\pi_{t+1} - \overline{\pi}) + v \ \widehat{lev}_t - \widehat{g}_{t+1}^n) - \Delta \varepsilon_{t+1}^{cb}$$

Budget constraint of borrowers

$$\widehat{b}_t = \widehat{R}_t^b + \beta_{lag}^b \left(\widehat{b}_{t-1} - (\pi_t - \overline{\pi}) - \widehat{g}_t^n \right) + \beta_b^{c^b} \widehat{c}_t^b - \beta_b^y \widehat{y}_t$$

Monetary Policy

$$\begin{array}{ll} i_t &=& G^i_{lag}i_{t-1} + \\ & & \\ & (1-G^i_{lag})\overbrace{r^n_t} + \overline{\pi} + G^i_\pi \left(\begin{array}{c} w(\pi^{4q}_{t+4} - \overline{\pi}) + \\ (1-w)(\pi^{4q}_t - \overline{\pi}) \end{array} \right) + G^i_y\widehat{y}_t) + \varepsilon^i_t \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

ANALYSIS

Implications of Financial Frictions & Macro-prudential Policy (MP)

$$\widehat{\Delta}_t = \beta_{lev}^{\Delta} \widehat{lev}_t + \varepsilon_t^{\Delta} \operatorname{credit Supply Shock}$$

• Leverage-elasticity of the Spread $\beta_{lev}^{\Delta} = \beta_{lev}^{PB} + \beta_{lev}^{MP}$

Implications of Financial Frictions & Macro-prudential Policy (MP)

$$\widehat{\Delta}_t = \beta_{lev}^{\Delta} \widehat{lev}_t + \varepsilon_t^{\Delta}$$

- Leverage-elasticity of the Spread
 - without financial friction and MP:
 - with financial friction (estimated):
 - with tight macro-prudential policy: (calibrated for exercise)

$$eta_{lev}^{\Delta}=eta_{lev}^{PB}+eta_{lev}^{MP} \ eta_{lev}^{\Delta}=0 \ eta_{lev}^{\Delta}=0.031 \ eta_{lev}^{\Delta}=0.1$$

Positive Credit Demand Shock

- Increase in Borrowers' demand gives rise to leverage [⋈] buildup
- Macro-prudential policy (exante/prevention policy) has trade-off:
 - Benefit: Rising spread mitigates increase in leverage
 - Cost: Weaker real activity

 π

Positive Credit Supply Shock

- Negative spread shock results in credit easing and economic expansion
- **Macro-prudential** policy (*ex-ante policy*) limits excess credit buildup

Negative Credit Supply Shock

- Positive spread shock results in debt deleveraging and recession
- Under macro-prudential policy (ex-post policy)
 - as the borrowers deleverage the spread is reduced
 - thus, we get weaker deleveraging and smoother path for all macro variables

Monetary Policy Shock

- A fall in output and households' debt.
- Decline in leverage and spread \rightarrow financial **decelerator** (mitigates the effect of shock rather than amplifies it)

 $\beta_{lev}^{\Delta} = 0$ $\beta_{lev}^{\Delta} = 0.031$

quarters

quarters

 $\beta_{lev}^{\Delta} = 0.1$

quarters

Financial Accelerator or Decelerator?

• Do credit spreads rise or fall after a monetary policy tightening?

	Financial Accelerator	Financial Decelerator
Model	BGG 1999	Curdia & Woodford 2016
Empirics	Gertler and Karadi 2015	Brzoza-Brzezina at el. 2016

- What about Israel?
 - In the calibrated model we get decelerator, which is robust for all acceptable calibrations
 - Empirically:

$$spread_t^H = \alpha \epsilon_t^{mon} + \beta X_{t-1} + \gamma Z_t + u_t$$
-0.75

MONETARY POLICY ANALYSIS

What if CB ignores the financial sector?

- "R-Correct": CB reacts to correct benchmark real interest rate
- "R-Wrong": CB reacts to misspecified benchmark real interest rate (ignores last two components)

What if CB ignores the financial sector?

- e.g., negative credit supply shock:
- spread negatively affects real activity (in lag), but CB doesn't response to it.
- In line with (Adrian 2020, CW 2016): under the correct policy rule the responses are much less volatile

R-Wrong: CB reacts to wrong benchmark IR. R-Correct: CB reacts to correct benchmark IR.

What if CB ignores the financial sector?

- If CB ignores the financial sector ("R-Wrong"):
 - Credit spread negatively affects real activity, and the CB doesn't response to it (previous slide)
 - The CB ignores also credit demand shocks
- In total The CB "loss function":

 $var(\pi_t - \pi) + \alpha \cdot var(\hat{y}_t)$ $var(\pi_t - \pi) + \alpha \cdot var(\Delta y_t - g_t^n)$ $var(\pi_t - \pi) + \alpha \cdot var(\hat{y}_t) + \beta \cdot var(\Delta i_t)$ $var(\pi_t - \pi) + \alpha \cdot var(\Delta y_t - g_t^n) + \beta \cdot var(\Delta i_t)$

it correctly wrong						
Loss	Case 1:FI	Case 2: PI	Ratio			
Version 1	0.08	0.24	3.12			
Version 2	0.26	0.56	2.18			
Version 3	0.25	0.28	1.13			
Version 4	0.43	0.60	1.40			

R-Correct R-Wrong

CONCLUSIONS

Main conclusions

- Households' credit spreads positively depend on leverage (in Israel).
- Macro-prudential policy can strengthen the sensitivity of the spread to leverage, as evident in the Israeli data (based on MP measures history).
- Consequentially,
 - Macro-prudential policy can mitigate over-borrowing and reduce risk of future default crises. However, this could be at the cost of a weaker real activity.
 - And may have expansionary effect on real activity in case of demand weakness or deleveraging (ex-post).
- Monetary policy may lose effectiveness to achieve its main goals if it ignores developments in the credit market, such as credit spread and leverage.

THANK YOU

APPENDIXES

Reference

- Adrian, Duarte, Liang, and Zabczyk, 2020, Monetary and Macroprudential Policy with Endogenous Risk. IMF Working Papers.
- Benigno, Eggertsson and Romei, 2020. Dynamic Debt Deleveraging and Optimal Monetary Policy. *American Economic Journal: Macroeconomics*
- Cúrdia and Woodford. 2010, Credit Spreads and Monetary Policy. *Journal of Money, Credit and Banking*
- Cúrdia and Woodford, 2016, Credit Frictions and Optimal Monetary Policy. Journal of Monetary Economics
- Gertler, Mark, and Peter Karadi. Monetary Policy Surprises, Credit Costs, and Economic Activity. American Economic Journal: Macroeconomics 7, no. 1 (January 1, 2015)
- Goodfriend and McCallum. 2007. Banking and Interest Rates in Monetary Policy Analysis: A Quantitative Exploration. *Journal of Monetary Economics*

Calibration

Parameter		Value	Source or Target
Elasticity of the Spread			
to Debt-GDP	eta_{lev}^{Δ}	0.031	Appendix A
Elasticity of the NRI to			
1. Spread	$lpha_{\Delta}^{NRI}$	0.5	Benigno et al. (2020)
			and authors considerations
2. Domestic expected	NDI		
potential growth	α_g^{NRI}	0.4	Ilek and Segal (2022)
2	$\sim NRI$	0.6	Ilala and Caral (2022)
3. Actual growth abroad	$\alpha_{g^*}^{NRI}$	0.6	Ilek and Segal (2022)
4. Preference shock	α_{cb}^{NRI}	0.2	Authors calibration
Elasticity of the Output Gap	$^{\circ}cb$	0 .2	
to NRI	eta^y_r	-0.1	Argov et al. (2012), Ilek and Segal (2022)
Euler equation of borrowers	, ,		
Borrowers' debt aversion	v	(0.0225, 1.25)	Benigno et al. (2020)
			and authors considerations
	$\beta_r^{c^b}$	$\beta_r^y \times 5$	Cúrdia and Woodford (2016)
	• •	,	and authors considerations

Adrian et al. 2020: **Monetary and Macroprudential Policy** with Endogenous Risk

- How monetary and macroprudential policy could reduce risks to financial stability? Jointly or Separately?
- Stylized model: Financial frictions give rise to a "financial accelerator" term in the IS curve:

$$y_t^{gap} = \mathbf{E}_t y_{t+1}^{gap} - \frac{1}{\sigma} \mathbf{E}_t (i_t - \pi_{t+1}) \left(-\frac{1}{\sigma} spr_t \right) - \frac{1}{\sigma} V(\mathbf{X}_{t-1}) \epsilon_t^{ygap}$$

Negative effect of financial conditions (spread) on real activity

$$SPR_t = (1 - b) \sigma_0 + bSPR_{t-1} - (1 + \theta) b\sigma_1 \epsilon_t + \theta b^2 \sigma_1 \epsilon_{t-1}$$

• Fit well to stylize facts. But, "Clearly, our setup is too stylized to provide answers to such questions, which we believe would be worth studying in a model with a fully micro-founded specification for financial conditions."

Cúrdia and Woodford 2010, 2016 and Benigno et al. 2020

- [All]: Reduced-form intermediation technology: a positive relationship between households' credit spread and their leverage.
- [CW]: "an adjustment for variations in credit **spreads** can improve upon the standard Taylor rule, but the optimal size of adjustment depends on the source of the variation in credit spreads. A response to the **quantity** of credit is less likely to be helpful."
- [All]: No macroprudential policy analysis