Heuristic Learning from Test Scores and Human Capital Decisions

Yoav Goldstein

Israeli Economic Association Conference

June 8, 2022

*I would like to thank the CBS for providing access to the data I use in this study

Do Students Update Ability Beliefs Heuristically?

- ► Test scores affect human capital investment decisions by providing ability signals
- ▶ Prior literature focused on rational learning from test scores; No attention to heuristics
- ▶ Left-digit bias might imply a discontinuity in the perception of signals at round scores
- ightarrow Study the impact of crossing 600 in the Psychometric Entrance Test (PET)
 - Empirical strategy: RDD
 - In the short term: 30% increase in applications to CS and EE programs in universities
 - In the long term: 20% increase in CS degrees; 10% increase in employment in tech firms;
 5% increase in annual income (about 7K NIS annually)

(Partial) Review of Related Literature

Test scores affects human capital decisions

- Avery et al. (2018) [major]
- ▶ Goodman (2016); Diamond and Persson (2017); Bond et al. (2018) [enrollment]
- ▶ Stinebrickner and Stinebrickner (2012); Arcidiacono et al. (2016); Avery et al. (2017) [completion]

Heterogeneity in the response to signals:

- Ahn et al. (2019); Owen (2021a); Coffman et al. (2021); McEwan et al. (2021) [women respond more]
- Bestenbostel (2021); Owen (2021b) [no gender heterogeneity]
- Graetz et al. (2020) [low-SES individuals respond more]

Heuristic interpretation of test scores:

Goodman et al. (2020) document a decrease in SAT retaking rate above round score cutoffs

Outline

Background & Data

Empirical Strategy

The Impact of Crossing 600 in the PET

Mechanisms – Bagrut Outcomes and PET Retake Impact on Long-Term Outcomes

impact on Long Torm Gatcome.

Conclusion

Administrative database (Israeli CBS)

- Data: PET scores, university applications, degrees (colleges and universities), labor market, demographics, Bagrut; Available until 2018
- ► The Psychometric Entrance Test (PET):
 - Normalized test scores; Approximately $\sim \mathcal{N}(550, 100)$
 - Differences in testing regularities between Jews and Arabs (also among Jews, by gender/age)
 Testing, by population group
- ➤ Sample: All individuals who participated in their first PET between 1995–2008 [wo/w Arabs]

Outcome Variables

- Main Outcomes: CS and EE applications
 - Very selective fields in terms of PET scores, and futural labor market outcomes
 Elite fields
 - Admission decisions are based on a weighted average of the PET score and the mean composite score in the Bagrut
 - Very low rate of acceptance to CS/EE programs with PET of 600
 Acceptance rate
 - Conditional admission chances are continuous at 600
 Conditional acceptance rate
 - Individuals with 600 (in the first test) usually retake before applying
 Share retaking
- Long Term Outcomes: Enrollment, Degree Attainment, Employment, Income

Outline

Background & Data

Empirical Strategy

The Impact of Crossing 600 in the PET
Impact on Applications
Mechanisms – Bagrut Outcomes and PET Retake
Impact on Long-Term Outcomes

Conclusion

Identification Based on a Heuristic

➤ The left-digit bias is the tendency of humans to judge the difference between 600 and 599 to be larger than that between 601 and 600

Evidence: consumers' decisions (Lacetera et al., 2012); experts' decisions (Olenski et al., 2020); Response to high-stakes test scores (Goodman et al., 2020)

- ▶ Implies a discontinuity in the perception of scores at 600
- ightarrow Allows RDD under the assumption that the potential outcomes are continuous at 600
 - Admission chances are continuous at 600 (was shown)
 - Density of observations is smooth at 600 (was shown)
 - Pre-determined outcomes are continuous at 600 (soon)

Main Estimation – Local Linear RD

- Score; is the first score of subject i
- ▶ Bandwidth of 20: observations within $Score_i \in [580, 619]$
- ▶ $Above600_i$ is an indicator for $Score_i \in [600, 619]$
- $ightharpoonup R_i$ is a continuous variable with the value $Score_i 600$

Then, estimate:

$$Y_i = \alpha + \tau \cdot Above600_i + \beta_I \cdot R_i + (\beta_r - \beta_I) \cdot Above600_i \cdot R_i + \varepsilon_i$$

The "Impact" of Crossing 600 on Predicted Outcomes

No discontinuous change in covariates (Table) and in predicted outcomes (based on covariates) at 600

Outline

Background & Data

Empirical Strategy

The Impact of Crossing 600 in the PET

Impact on Applications

Mechanisms – Bagrut Outcomes and PET Retake

Impact on Long-Term Outcomes

Conclusion

Crossing 600 and University Applications

Within Three Years After the Test

Full distribution Alternative Outcomes Alternative Specifications Alternative cutoffs (placebo) Using all tests

Crossing 600 and University Applications

Ever

▶ The increase in CS applications persists (20%) and the increase in EE applications dissipates

After high school Effects on Arabs

Heterogeneity of the Impact of Crossing 600 on CS Applications, by Age

▶ The effect is driven by the younger test-takers (consistent with learning on ability mechanism)

Estimation Two groups (17-21, 22+)

Heterogeneity by Gender and SES, Younger Test-takers (21 and Below)

By Gender	Men (N = 10, 971)		Women (N = 18, 832)	
	Mean	Est. Effect	Mean	Est. Effect
Within three years	5.165	1.758* (0.994)	2.403	1.285** (0.502)
Ever	15.777	2.917* (1.489)	5.641	1.262* (0.723)
By SES: parental_years_of_education > 12	Low $(N = 13, 276)$		$High\; (\mathit{N}=16,527)$	
(Both Parents)	Mean	Est. Effect	Mean	Est. Effect
Within three years	3.043	1.438** (0.716)	3.699	1.617** (0.659)
Ever	8.432	1.417 (1.045)	10.026	2.588*** (0.996)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

[►] Similar (relative) increase among men/women and low/high SES test-takers

Summary – Main Results

Crossing 600 in the first PET increases CS & EE applications:

- ightharpoonup CS: $\uparrow 1.1$ p.p. (30%) within three years; $\uparrow 1.4$ p.p. (20%) ever
- ► EE: ↑ 0.8p.p. (25%) within three years; no persistent increase
- ▶ Driven by the younger test-takers (ages 17-21)
- ▶ Similar effects for men and women, low and high SES
- → Open Questions:
 - 1. What are the effects on admission-related outcomes (PET and Bagrut)?
 - 2. What are the long-term implications (degrees and labor market)? [Focus on the younger test-takers, 21 and below]

The Impact of Crossing 600 on Bagrut Outcomes

▶ Individuals who score just above 600 improve high-school outcomes in scientific programs

The Impact of Crossing 600 on PET Retake

- Before applying to CS, individuals who score just above 600 retake the PET and massively improve their PET scores
- ▶ The average effect of crossing 600 on retaking is negative (Goodman et al., 2020)

Estimating Long-Term Effects – Local Randomization Approach

- ▶ Study the effects on *degrees*, *employment* and *income*
- ▶ To increase precision, I use an *additional* specification:

$$Y_i = \alpha^0 + \tau^0 \cdot Above600_i + \varepsilon_i^0 \quad within[590:609]$$

- ► To support the validity of this specification:
 - Point estimates are not sensitive to specification
 - Controlling for quantitative and Hebrew PET scores (only excluding English) and other characteristics does not change the results
 - Falsification tests yield small and mostly insignificant results

 Table

The Impact of Crossing 600 on CS Studies

CS enrollment increase by 22-25%

The Impact of Crossing 600 on CS Studies

CS degree attainment increase by 22-30%; Driven by a change in the preferred *field* (not institution)

The Impact of Crossing 600 on Labor Market Outcomes

Tech employment increase by 8-12%; Annual income increase by 5% (7K NIS)

Summary – Long Term Effects

- ► ↑ 22-30% in CS degrees in universities
- Driven by a change in the preferred field, mostly from social sciences and semi-medical studies
- ▶ ↑ 8-12% on employment in tech
- ► ↑ 4.5-5% income; Implying huge marginal returns (200-300%)

Outline

Background & Data

Empirical Strategy

The Impact of Crossing 600 in the PET

Impact on Applications

Mechanisms – Bagrut Outcomes and PET Retake

Impact on Long-Term Outcomes

impact on Long-Term Outcome.

Conclusion

Conclusion

Main Findings:

- ▶ Significant increase in CS & EE applications above a round score (600) in the first PET
- ▶ Driven by the younger test-takers; Men and women
- ► In the long term: Increase in the attainment of CS degrees; Increase in employment in tech industry; Income gains

Takeaways:

- Ability signals could influence young adults' human capital decisions
- ► Heuristics are central in interpreting signals (grading policy?)
- ▶ Huge labor-market returns for the students on the margin of applying to CS programs

Most Common Fields of Study in Universities in Israel

	Q. Score (50-15)	Total Score (200-800)	Tech (%)	Females (%)	Father Educ. (years)
Electrical Engineering	132.9	651.9	41.9	14.8	15.0
Computer Sciences	131.1	648.6	30.7	30.2	15.0
Economics	123.5	610.6	11.1	46.0	14.2
Law	123.0	636.8	3.2	60.2	14.8
Biology	120.3	613.0	14.2	73.3	14.7
Psychology	119.4	619.9	7.3	80.3	14.7
Management	113.8	564.8	15.5	60.0	13.7
Politics	109.8	572.0	8.4	62.6	14.1
Social Work	108.3	554.6	1.5	92.6	13.6
Sociology	106.0	545.8	7.4	86.9	13.5
Humanities	102.4	514.6	6.9	72.2	13.2
Nursery	101.5	495.7	0.5	79.4	12.8
Social Sciences	88.7	422.3	4.6	80.0	11.5

Returns to Field of Study (Achdut et al., 2018)

University Applications, by First PET Score

(b) EE applications, within three years

University Applications, by First PET Score

Testing in the PET, by Population Group

10

▶ Note: The average (first) PET score is about 400 for Arabs and about 550 for Jews

PET Total Score Distribution

Background Covariates and PET Score

Background Covariates and PET Score

Continuous Unconditional Acceptance Rate

Continuous Conditional Acceptance Rate

Share Retaking The PET Among CS Applicants

"Impact" of Crossing 600 on Pre-determined Outcomes (I)

	Full Sam	ple ($N = 44,075$)	Jews $(N = 42, 147)$	
Outcome	Mean	Est. Effect	Mean	Est. Effect
Age	19.797	-0.020 (0.047)	19.919	-0.009 (0.048)
Male Share (%)	44.336	1.288 (0.944)	44.026	1.385 (0.965)
Arab Share (%)	4.868	0.535 (0.391)	0.000	-
Non-Religious School (%)	82.487	0.558 (0.727)	81.595	0.486 (0.757)
Born in Israel (%)	83.959	-0.543 (0.696)	83.251	-0.632 (0.723)
Both Parents Born in Israel (%)	42.890	0.989 (0.940)	40.280	0.713 (0.954)
Parental Income $>$ 250K NIS (%)	53.947	-0.633 (0.944)	54.839	-0.578 (0.964)
Educated Parents (%)	50.456	0.182 (0.948)	51.427	-0.058 (0.970)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

"Impact" of Crossing 600 on Pre-determined Outcomes (II)

	Full Sample	e (N = 44, 075)	Jews (<i>N</i>	Jews (N = 42, 147)	
Outcome	Mean	Est. Effect	Mean	Est. Effect	
Test's Year	2003.399	-0.062 (0.065)	2003.360	-0.019 (0.066)	
Test's Month	7.368	-0.044 (0.066)	7.365	-0.030 (0.068)	
PET Quantitative Score	117.01	-0.065 (0.174)	116.773	-0.098 (0.177)	
Applied to EE in Locality (%)	5.504	-0.033 (0.034)	5.563	-0.039 (0.035)	
Applied to CS in Locality (%)	7.086	-0.056 (0.041)	7.138	-0.061 (0.043)	
Educated Parents in Locality (%)	45.806	-0.575** (0.264)	47.232	-0.459* (0.243)	

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

The Impact of Crossing 600 on University Applications

	Full Sample ($N = 44,075$)		Jews $(N = 42, 147)$	
Outcome	Mean	Est. Effect	Mean	Est. Effect
A. Within Three Years				
CS (%)	3.801	1.366*** (0.402)	3.104	1.083*** (0.383)
EE (%)	3.229	0.707** (0.359)	2.792	0.762** (0.348)
B. Ever				
CS (%)	8.330	1.890*** (0.558)	7.516	1.364** (0.548)
EE	6.505	0.422 (0.485)	6.005	0.322 (0.482)
C. After High-School				
CS (%)	7.810	1.534*** (0.536)	7.100	1.079** (0.527)
EE (%)	5.670	-0.114	5.249	-0.203

(0.448)

(0.444)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01 Back

Mechanisms – Heterogeneity of the Effects

A. Relative Quantitative Score				
	Low (N	t = 7,426)	Medium-High ($N = 22,385$)	
Outcome:	Mean (1)	Estimate (2)	Mean (3)	Estimate (4)
CS	3.446	1.066 (0.959)	11.225	2.269** (0.895)
Retake	43.327	-5.168** (2.308)	54.627	-2.719** (1.323)
CS * Retake	2.828	0.190 (0.819)	9.272	1.416* (0.810)
B. Predicted Retake Rate				
	Low (N	7 = 7,453)	Medium-H	igh ($N = 22,358$)
Outcome:	Mean (1)	Estimate (2)	Mean (3)	Estimate (4)
CS	3.351	0.841 (0.922)	11.249	2.511*** (0.91)
Retake	29.544	-4.137** (2.053)	59.117	-2.756** (1.322)
CS * Retake	1.753	0.181 (0.667)	9.617	1.563* (0.834)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01 Back (main)

Effects on CS & EE Applications – By Specification

	Linear	Linear + Controls	Triangular Kernel	Quadratic
A. CS				
20	1.083*** (0.383)	1.057*** (0.382)	1.062*** (0.411)	1.021* (0.580)
30	1.143*** (0.314)	1.128*** (0.311)	1.077*** (0.337)	0.994** (0.469)
Optimal (15)	1.010** (0.474)			
B. EE				
20	0.762** (0.348)	0.717** (0.341)	0.868** (0.366)	0.995* (0.512)
30	0.406 (0.287)	0.357 (0.280)	0.645** (0.304)	1.006** (0.420)
Optimal (16)	0.909** (0.416)			

Effect on Applications (More Outcomes)

	Full Samp	Full Sample ($N=44,075$)		$Jews\;(\mathit{N}=42,147)$	
Outcome	Mean	Est. Effect	Mean	Est. Effect	
Any (%)	40.277	0.430 (0.939)	38.606	0.356 (0.956)	
STEM (%)	19.682	1.776** (0.786)	18.007	1.738** (0.784)	
Non-STEM (%)	20.595	-1.345^* (0.773)	20.599	$-1.383^* \ (0.790)$	
Predicted Income (1,000 NIS)	206.281	4.703*** (1.688)	203.737	4.217*** (1.741)	
CS, Top Choice	1.920	0.703** (0.298)	1.584	0.527* (0.285)	
CS, Elite University	2.333	0.919*** (0.320)	1.688	0.663** (0.290)	

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Effect of Crossing 600 on Applications (All Tests)

	Full Samp	Full Sample ($N=69,336$)		I = 60,911)
Outcome	Mean	Est. Effect	Mean	Est. Effect
CS	5.990	1.033*** (0.386)	3.946	0.915*** (0.348)
EE	4.647	0.699** (0.333)	3.221	0.710** (0.307)
Any	51.820	0.432 (0.757)	46.285	0.259 (0.811)
Predicted Income	224.899	3.653*** (1.268)	218.485	3.940*** (1.402)

^{*} $\rho < 0.1$ ** $\rho < 0.05$ *** $\rho < 0.01$

Effects on CS & EE Applications – Alternative Cutoffs

Effects on CS & EE Applications, Sample of Arabs

	CS		EE	
	Three years	Any	Three years	Any
A. Above 600				
	5.667	11.157***	-1.568	1.246
	(3.537)	(4.004)	(2.976)	(3.356)
N = 1,808				
Mean	17.465	24.291	11.791	16.312
B. Above 500				
	2.166*	1.264	-0.588	-1.142
	(1.221)	(1.469)	(1.086)	(1.280)
N = 6,972				
Mean	5.983	4.118	9.298	6.630

Numbers represent percentage points; * p < 0.1 ** p < 0.05 *** p < 0.01

Heterogeneity of the Impact by Age, Estimation

$$Y_{i} = \theta + \theta^{a} \cdot Age_{i}^{*} + \delta \cdot Above600_{i} + \delta^{a} \cdot Age_{i}^{*} \cdot Above600_{i} +$$

$$\gamma_{I} \cdot R_{i} + \gamma_{I}^{a} \cdot Age_{i}^{*} \cdot R_{i} + (\gamma_{r} - \gamma_{I}) \cdot Above600_{i} \cdot R_{i} +$$

$$(\gamma_{r}^{a} - \gamma_{I}^{a}) \cdot Age_{i}^{*} \cdot Above600_{i} \cdot R_{i} + \varepsilon_{i}^{1}$$

Where $Age^* = Age - 18$

Heterogeneity of the Effect of Crossing 600, by Age, Three Groups Estimation

By Age	Age < 2	Age < 22 (N = 29, 676)		$22 \ (N=12,475)$
	Mean	Est. Effect	Mean	Est. Effect
Within three years	3.441	1.500*** (0.483)	2.386	-0.048 (0.581)
Ever	9.496	2.011*** (0.724)	3.119	-0.303 (0.639)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Heterogeneity of the Effects, by Age, Three Groups Estimation

(a) CS, within three years

(b) CS, ever

The Impact of Crossing 600 on Bagrut Outcomes

	Ages 21 and	d Below ($N = 29,803$)
Outcome	Mean	Est. Effect
5 Points CS (%)	21.568	2.584*** (0.966)
5 Points Math (%)	39.252	2.069* (1.142)
Total Points > 30 (%)	24.600	1.887* (1.012)
Mean Composite Score	99.690	0.140 (0.187)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

The Impact of Crossing 600 on PET Retake

	Jews, 21 and Below ($\mathit{N}=29,803$)		
Outcome	Mean	Est. Effect	
Retake (%)	51.830	-3.233*** (1.155)	
Retake * CS (%)	7.682	1.174* (0.649)	
Maximum PET Score > 640 (%)	33.760	-1.176 (1.106)	
Maximum PET Score > 640 * CS (%)	5.995	0.977* (0.585)	

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

The Impact on Degree Attainment

	Main (<i>I</i>	V = 29,803)	Secondary ($\mathit{N}=15,461$)	
Outcome	Mean	Est. Effect	Mean	Est. Effect
A. CS Programs				
Enrollment (%)	4.396	1.007** (0.512)	4.605	1.138*** (0.356)
Degree (%)	2.721	0.614 (0.415)	2.948	0.882*** (0.291)
Degree, Inc. Colleges. (%)	4.783	1.211** (0.528)	4.924	1.344*** (0.370)
B. All Programs				
STEM Degree (%)	30.443	1.519 (1.077)	31.152	2.076*** (0.751)
Non-STEM Degree (%)	55.252	-1.830 (1.150)	55.364	-1.640** (0.801)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Heterogeneity Robustness Optimal Bandwidths, by Order and Kernel Function Above 21 Back

Robustness, Secondary Estimation, Degree Attainment

Bandwidth	No Controls	With Controls
A. CS Enrollment		
10	1.138*** (0.356)	1.135*** (0.360)
5	1.472*** (0.509)	1.368*** (0.505)
B. CS Degree		
10	0.882*** (0.291)	0.801*** (0.295)
5	0.797* (0.414)	0.716* (0.413)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Optimal Bandwidths, by Polynomial Fit Order, CS Studies

Order	0	1	2	3
A. CS Enrollment				
Uniform Kernel	1.151**	1.173*	1.215*	1.474**
	(0.517)	(0.615)	(0.626)	(0.717)
	6	18	37	47
Triangular Kernel	1.073**	1.096*	1.364**	1.399*
	(0.511)	(0.561)	(0.663)	(0.818)
	10	26	37	42
B. CS Degree				
Uniform Kernel	0.533	0.624	0.594	0.765
	(0.386)	(0.505)	(0.568)	(0.589)
	6	18	30	48
Triangular Kernel	0.591	0.568	0.626	0.706
	(0.424)	(0.457)	(0.516)	(0.590)
	9	28	43	54

^{*} $\rho < 0.1$ ** $\rho < 0.05$ *** $\rho < 0.01$

Robustness, Secondary Estimation, Labor Market

Bandwidth	No Controls	With Controls
A. Employed in Tech (%)		
10	1.054* (0.540)	1.359** (0.543)
5	1.886** (0.779)	1.777** (0.765)
B. Log Annual Income * 100		
10	4.755** (2.076)	4.358** (2.206)
5	4.340 (2.923)	4.459 (2.825)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

The Impact on Labor Market Outcomes

	Main ($N = 29,803$)		Secondary ($\mathit{N}=15,461$)	
Outcome	Mean	Est. Effect	Mean	Est. Effect
Employment	85.585	0.927 (0.818)	85.390	0.182 (0.567)
Employment in Tech (%)	12.370	1.487* (0.780)	12.400	1.054* (0.540)
Annual Income (1,000 NIS)	140.703	6.164 (4.868)	140.758	6.809** (3.376)
Log Annual Income * 100	1134.753	4.738 (2.974)	1134.353	4.755** (2.076)
Rank Annual Income * 100	45.751	1.640** (0.745)	45.539	1.236** (0.518)
An. Salaried Inc. (1,000 NIS)	136.031	7.356 (4.762)	135.403	7.237** (3.301)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Heterogeneity Robustness

Optimal Bandwidths, by Order and Kernel Function Above 21 Back

Optimal Bandwidths, by Order of the Polynomial Fit, Labor Market

Order	0	1	2	3
A. Employed in Tech (%)				
Uniform Kernel	1.231*	0.989	1.994*	1.588
	0.740	0.755	1.075	1.111
	9	28	29	47
Triangular Kernel	1.256*	1.233*	2.241**	2.699**
	0.703	0.742	1.098	1.301
	14	36	32	39
B. Log Annual Income * 100				
Uniform Kernel	5.725**	4.448	3.100	3.399
	(2.546)	(3.553)	(3.980)	(4.369)
	10	19	31	42
Triangular Kernel	4.859*	4.588	5.574	5.214
	(2.894)	(3.413)	(3.592)	(4.854)
	12	25	45	40

^{[*} p < 0.1 ** p < 0.05 *** p < 0.01

Effects on Long Term Outcomes (Jews, 22 and Above)

	Main (<i>I</i>	$Main\; (\textit{N}=12,343)$		Secondary ($N=6,414$)	
Outcome	Mean	Est. Effect	Mean	Est. Effect	
A. Degrees					
CS Degree	0.568	-0.159 (0.266)	0.585	-0.080 (0.184)	
CD Degree, Any Inst.	2.840	-0.350 (0.600)	2.957	-0.401 (0.409)	
B. Labor Market					
Employment in Tech	7.178	0.357 (0.955)	7.548	0.880 (0.677)	
Log(Income)	11.923	0.001 (0.045)	11.903	-0.003 (0.031)	

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Long Term Impact, Heterogeneity

A. By Gender	Men (<i>N</i>	= 10,971)	Women (N = 18, 785)	
Outcome	Mean (1)	Est. Effect (2)	Mean (3)	Est. Effect (4)
CS Degree, Inc. Colleges	8.316	2.125*** (0.771)	3.012	0.720** (0.366)
Log Annual Income * 100	1121.173	6.813* (3.883)	1141.026	4.263* (2.409)
B. By SES (Parental Education Above 12 Years)	Low (N = 6, 879)		= 6,879 High ($N = 8,586$)	
Outcome	Mean (1)	Est. Effect (2)	Mean (3)	Est. Effect (4)
CS Degree, Inc. Colleges	4.819	1.053* (0.543)	5.009	1.573*** (0.504)
Log Annual Income * 100	1140.406	-0.013 (2.992)	1129.397	8.688*** (2.870)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01

Back 1 Back 1 (main) Back 2 Back 2 (main)

Falsification Tests, Secondary Estimation

Bandwidth	$10 \; (N=15,465)$		5 (N = 7,692)	
	Mean	Estimate	Mean	Estimate
Age	18.679	0.006 (0.026)	18.698	-0.022 (0.037)
Male Share	163.949	-1.754** (0.776)	165.125	-1.912^* (1.103)
Non-Religious School (%)	80.176	-0.409 (0.644)	79.926	-0.650 (0.927)
Born in Israel (%)	80.674	0.116 (0.634)	80.851	-0.952 (0.914)
Both Parents Born in Israel (%)	38.462	0.982 (0.784)	38.298	0.330 (1.118)
Parental Income > 250K	56.959	1.420* (0.795)	56.660	0.139 (1.139)
Educated Parents	55.262	0.521 (0.799)	55.851	-0.774 (1.142)
Test's Year	2002.492	0.025 (0.057)	2002.490	0.004 (0.081)
Test's Month	8.010	-0.010 (0.054)	7.950	0.001 (0.077)
Share Applied to CS in Locality (%)	7.245	0.001 (0.034)	7.278	-0.067 (0.049)
Share Educated Parents in Locality (%)	46.993	0.132 (0.198)	47.186	-0.355 (0.286)

^{*} p < 0.1 ** p < 0.05 *** p < 0.01 Back

- **Ahn, Thomas, Peter Arcidiacono, Amy Hopson, and James Thomas**, "Equilibrium Grade Inflation with Implications for Female Interest in STEM Majors," Technical Report 2019.
- Arcidiacono, Peter, Esteban Aucejo, Arnaud Maurel, and Tyler Ransom, "College Attrition and the Dynamics of Information Revelation," Technical Report 2016.
- Avery, Christopher, Oded Gurantz, Michael Hurwitz, and Jonathan Smith, "Giving College Credit Where It Is Due: Advanced Placement Exam Scores and College Outcomes," *Journal of Labor Economics*, 2017, 35 (1), 67–147.
- _ , _ , _ , and _ , "Shifting College Majors in Response to Advanced Placement Exam Scores," *The Journal of Human Resources*, 2018, *53* (4), 918–956.
- **Bestenbostel, Adam**, "Do Grade Signals Drive the Gender Gap in STEM? Evidence From a Regression Discontinuity," Technical Report 2021.
- Bond, Timothy N., George Bulman, Xiaoxiao Li, and Jonathan Snith, "Updating Human Capital Decisions: Evidence from SAT Score Shocks and College Applications," *Journal of Labor Economics*, 2018, 36 (3), 807—839.
- Coffman, Katherine B., Paola Ugalde Araya, and Basit Zafar, "A (Dynamic) Investigation of Stereotypes, Belief-Updating, and Behavior," Technical Report 2021.

- **Diamond, Rebecca and Petra Persson**, "The Long-term Consequences of Teacher Discretion in Grading of High-stakes Tests," Technical Report 2017.
- Goodman, Joshua, Oded Gurantz, and Jonathan Smith, "Take Two! SAT Retaking and College Enrollment Gaps," *American Economic Journal: Economic Policy*, 2020, 12 (2), 115–158.
- **Goodman, Serena**, "Learning from the Test: Raising Selective College Enrollment by Providing Information," *The Review of Economics and Statistics*, 2016, *98* (4), 671—-684.
- **Graetz, Georg, Björn Öckert, and Oskar Nordström Skans**, "Family Background and the Responses to Higher SAT Scores," Technical Report 2020.
- Lacetera, Nicola, Devin G. Pope, and Justin R. Sydnor, "Heuristic Thinking and Limited Attention in the Car Market," *American Economic Review*, 2012, 102 (5), 2206–36.
- McEwan, Patrick J., Sherin Rogers, and Akila Weerapana, "Grade Sensitivity and the Economics Major at a Women's College," *AEA Papers and Proceedings*, 2021, *111*, 102–106.
- Olenski, Andrew R., Andre Zimerman, Stephen Coussens, and Anupam B. Jena, "Behavioral Heuristics in Coronary-Artery Bypass Graft Surgery," *The New England Journal of Medicine*, 2020, 382 (8), 778–779.

- **Owen, Stephanie**, "College Field Specialization and Beliefs about Relative Performance," Technical Report 2021.
- _ , "Do Grade Signals Drive the Gender Gap in STEM? Evidence From a Regression Discontinuity," Technical Report 2021.
- **Stinebrickner, Todd and Ralph Stinebrickner**, "Learning about Academic Ability and the College Dropout Decision," *Journal of Labor Economics*, 2012, *30* (4), 707—-748.