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Abstract

An asymmetric cycle of investment and beliefs emerges when payoffs reveal information
about the state of the world and an agent (Follower) only learns about another agent’s
(Loner’s) payoffs from his actions. Entry to the market is gradual as Follower “free-rides”
on Loner’s information and waits to see him stay in the market before entering himself.
However, exit tends to be abrupt: once Loner exits the market, Follower does the same as
exit is a strong indicator of adverse conditions. After leaving the market, agents do not
observe payoffs and cannot tell if conditions have improved so activity is resumed long after
it crashes.

The asymmetry in the cycle is magnified when information is public. If Follower observes
Loner’s payoffs and not just his actions, he is more likely to defer his entry compared
to the benchmark model. Finally, model simulations show a positive correlation between
investment and dispersion of beliefs which is largely attributed to the learning mechanism
in the model.

1 Introduction

Rational agents rely on available information to choose optimal actions, yet often agents’ actions
also generate information. Specifically, this is true in situations where active investment provides
excess information regarding potential profitability. For example, a venture capital fund will
learn more about the technology under development and about the business plans of a startup
once the fund invests in it; a firm will learn more about potential revenue at a new geographic
location after it opens a new branch in the area. While investment is a source for potential
monetary gains in these settings, it is also a tool for agents to acquire information regarding the
asset in which they are investing. The additional role of investment increases agents’ incentives
to enter the market. However, if agents are able to observe decisions by other rational agents,
the incentive to learn by investment is moderated as agents “free-ride” on the information
acquired by others.

This paper examines the implications of the two way connection between information and
real actions on the dynamics and comovements of investment, learning and beliefs. To highlight
the mechanisms in play I focus on a setting of two agents, Loner and Follower, where both
can invest in a similar asset. When choosing to invest, an agent receives a privately observed
payoff that, conditional on the state of the world, is drawn independently from the other agent’s
payoff. The two agents differ in the ability to observe each other’s actions. Loner is assumed
to be “isolated” - he cannot observe the actions of Follower. However, Follower can observe
Loner’s investment decisions through which he can learn about Loner’s private signals.

Equilibrium in the model exhibits two main features. First, an asymmetric dynamic of
beliefs and investment. While agents’ entry to the market is gradual, the exit is usually abrupt.
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Second, recovery is slow, meaning that after activity crashes it takes a long time for agents
to resume investment. The basic mechanism that generates these results is as follows. Agents
enter the market when they become optimistic enough regarding the state of the world (once
their belief crosses a certain threshold). Entry is gradual, as Follower observes Loner’s actions
and thus learns about the state without engaging in active investment himself. This means that
Follower prefers to “free-ride” on Loner’s information and defer his entry. Once agents enter the
market they start receiving payoffs which provide information about the state of the world and
the profitability of investment. If an agent receives bad news he opts to exit the market. In a
situation where Loner receives a negative signal before Follower and is seen leaving the market,
Follower experiences a “Wile E. Coyote moment”.1 Like the cartoon character who runs off the
cliff in pursuit of the Road Runner, only to find himself hovering in mid-air before crashing to
the ground, Follower realizes that his optimism is groundless. He immediately exits the market,
causing an abrupt crash in activity. The crash in activity cuts off the flow of information,
slowing agents’ reactions to improvements in the state of the world and making the “boom” in
activity more gradual than the crash.

The paper is closely related to the literature on social learning in which agents’ actions
generate information (see Hörner and Skrzypacz (2016) for a recent survey). One class of
models in this literature is that of “strategic bandit models” where the signals generated by
agents’ actions are publicly observed [Bolton and Harris (1999); Keller et al. (2005); Keller
and Rady (2015)]. In another class of models signals are private, however, the action that
generates them is irreversible [Chamley and Gale (1994); Caplin and Leahy (1994); Rosenberg
et al. (2007); Moscarini and Squintani (2010); Murto and Välimäki (2011, 2013)]. Frick and
Ishii (2015) construct a model with publicly observed signals and irreversible actions. My model
differs from this strand of literature in two aspects. First, these models assume that the state
of the world is constant while I allow for the state to change over time in order to study the
dynamics of the main variables. Second, my model is the first, to the best of my knowledge,
to tackle a setting of private information with reversible actions (agents are free to enter and
exit the market in any period). The focus on reversible actions makes it possible to explore the
dynamics of investment and learning without imposing any a-priori asymmetries in the model:
any asymmetric dynamics that arise in my model are due to the information structure. The
assumption of private signals turns out to have implications on these asymmetries and it also
allows the studying of dispersion in posterior beliefs.

Adding these complexities to the model requires simplifying elsewhere in order to keep the
model tractable. For this reason I take on the simplifying assumption of asymmetric roles
between the two agents (Follower observes Loner but not vice versa) while the literature usually
explores symmetric settings and equilibriums. The model should thus be viewed as a step
toward a complete solution of a problem that so far has not been addressed in the literature.
Nonetheless, it may also be relevant for settings in which agents’ abilities to observe others are
exogenous to their investment decisions. For example, when two firms that engage in the same
market differ in size it is plausible that the small firm will be able to observe the big firm’s
actions but not vice versa. All the more so if one of the firms is private and the other is public
and thus the latter is obligated to report its actions to shareholders. It may even be the case
that two public firms are subjected to different disclosure requirements. In Israel, for example,
new firms on the stock exchange are granted leniencies in mandatory disclosure to shareholders.

The paper also relates to the literature that models the feedback between information and
macro or financial activity. The common feature of these models is that optimism boosts
economic activity which in turn generates more public information. Thus, there is a larger flow
of information and faster reaction to shocks in good times, when shocks tend to be adverse,
than in bad times, when shocks tend to be positive. This mechanism creates asymmetric

1The phrase was coined by Krugman (2007) in reference to foreign investors financing what he viewed as an
unsustainable U.S. current account deficit in the mid 2000s.
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cycles - the market crashes quickly following a negative shock but recovery is gradual. In
Veldkamp (2005) this mechanism is modeled in a credit market where investment generates
information regarding the profitability of the project. Fajgelbaum et al. (2017) highlight the role
of uncertainty in investors’ decision-making and show that the interaction between information
and investment leads to uncertainty traps with low activity and high uncertainty. My model
features similar mechanisms, as information is more abundant in good times when activity is
high. However, since my focus is on information channels I relax the simplifying assumptions
made in these models such as public information, myopic agents or irreversible entry to market.
An asymmetric informational cycle also arises in Zeira (1994, 1999) and in Van Nieuwerburgh
and Veldkamp (2006). In these models the structure of the production function is such that
changes in unobserved fundamentals are identified more accurately when production is high.

The second part of the paper focuses on the role of private information in generating the
main results. Section 5 shows that regardless of the quality of information observed by Follower
(i.e., Loner’s signals or actions), the “free-riding” effect makes him enter the market after
Loner. The results regarding abrupt exits and slow recoveries also hold, so asymmetry is
maintained in the public information setting as well. However, the quality of information does
affect the incentive and timing of Follower’s entry. Directly observing Loner’s signal makes
it less costly for Follower to enter the market, compared to the baseline setting in which he
observes Loner’s actions. Follower’s threshold for entry is thus lower in the public information
setting. Nonetheless, in equilibrium he is more likely to enter the market later. The intuition
is that Follower can now tell if Loner is staying in the market because he received good news
or because he has not yet received bad news. In the private information setting these two
alternatives are indistinguishable so Follower quickly becomes very optimistic when he observes
Loner stay in the market, and so his belief crosses his threshold earlier. This means that public
information generally defers entry to the market and amplifies the asymmetry of the cycle.

Finally, Section 6 demonstrates that disagreement, i.e., dispersion of beliefs, is pro cycli-
cal: it is positively correlated with total investment. This is because when both agents are
in the market, information is based more on private signals, making beliefs more dispersed.
Once activity crashes, beliefs become perfectly aligned and remain that way until investment
is resumed. The learning mechanism in the model plays an important role in generating this
positive correlation and absent of it disagreement is less correlated with activity and may even
be counter cyclical.

The rest of the paper is organized as follows. Section 2 describes the general setting of
the model; Section 3 discusses theoretical results and simulations for a setting with a constant
state of the world; Section 4 generalizes these results to a stochastic state setting; Section 5
analyzes the role of private information by comparing the benchmark model to a public infor-
mation setting; Section 6 discusses the dynamics of disagreement in equilibrium, and Section 7
concludes.

2 General Setting

There are two possible states of the world θ ∈ {G,B} and time is discrete t = 0, 1, 2... . Initially,
I assume that the state is constant over time and later I relax this assumption by allowing θt to
follow a Markov Chain process. The structure of the model is such that symmetry is maintained
wherever possible so that any asymmetric dynamics that arise are due solely to the information
structure.

There are two risk neutral agents in the economy. Let µit denote the probability that agent i
assigns to the state of the world being G at the beginning of period t. I assume that priors, {µi0},
are common knowledge. Both agents discount future earnings by the same factor δ ∈ (0, 1).

There is one asset in the economy and, conditional on the state θ, its returns are drawn
independently across time and across agents. Specifically, in each period the investment pays 0
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with probability p, and πθ with probability 1 − p. This means that if an agent observes πθ he
learns the state of the world in that period, and a payoff of 0 teaches him nothing about the
state (note that 1 − p, the probability of payment πθ, is independent of θ). This distribution
of payoffs is chosen to maintain the a priori symmetry in the model as it imposes no trend in
beliefs.2 If an agent decides to invest in the asset in period t, he incurs a cost c in that period
(there is no fixed cost for investment) and his payoff is private information. If he chooses not
to invest his payoff in that period is 0.3

Denote by x the expected payoff from active investment in a single period given state G,
meaning x = (1− p)πG − c. I assume that x > 0. In order to maintain symmetry between the
two states of the world, I further assume that the expected payoff given state B is −x, meaning
(1 − p)πB − c = −x < 0. This specifically means that the investment is profitable in state G
but not in state B.

3 Constant State of the World

Assume that the state of the world θ is constant over time but initially unknown to agents.

3.1 Loner

As aforesaid, Loner is an isolated agent and cannot observe the other agent’s actions. Note that
the only relevant information for his decision making in period t is his belief µt. This belief is
updated according to Bayes’ rule after each period’s payoff πt is revealed (note that πt = 0 if
the agent did not invest or if his investment yielded a payoff of 0):

µt+1(πt) =


µt if πt = 0
1 if πt = πG

0 if πt = πB

The problem facing the agent is thus a dynamic optimal choice problem. Given a belief
µ, let V N (µ) and V I(µ) denote the value gained by the agent if he chooses not to invest in
the current period and to invest, respectively. The Bellman equation for the dynamic optimal
choice problem is therefore:

V (µ) = max{V N (µ), V I(µ)}

where,

V N (µt) = δV (µt)

V I(µt) = Eµt
[
πt + δV (µt+1)]− c =

Pr(πt = 0|µt) [0 + δV (µt)] + Pr(πt = πG|µt)
[
πG + δV (1)

]
+ Pr(πt = πB|µt)

[
πB + δV (0)

]
− c =

pδV (µt)+(1−p)µt
[
πG + δV (1)

]
+(1−p)(1−µt)πB−c = (2µt−1)x+δ

[
pV (µt) + (1− p)µt

x

1− δ

]
2“One-armed bandit” models for example usually feature a Poisson distribution with a rate that depends on

the state of the world. However, the difference between rates imposes a drift in beliefs over time which governs
affects behavior.

3This setting can be viewed as follows. There is an outside option that guarantees a fixed payoff r (which we
normalize to 0). For the most part the investment is similar to the outside option and also pays r. The true
nature of the investment is revealed only on rare occasions, with probability 1 − p, but in these occasions the
payoff is either extremely high or extremely low, depending on the state of the world. These rare occasions are
what determine if the investment is preferable to the outside option.
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Note that if Loner chooses not to invest, he will not receive new information, and thus if it
is optimal for him not to invest now he will never invest again. The Bellman equation can thus
be written as:

V (µ) = max

{
0 , (2µ− 1)x+ δ

[
pV (µ) + (1− p)µ x

1− δ

]}
(1)

I will now characterize V and show that Loner’s optimal choice is to invest as long as his
belief exceeds a certain threshold.

Definition 1. A function f : [0, 1] → R is threshold-linear convex (TLC) with threshold
M if f is continuous, increasing and convex, and if there exists a threshold M such that f is
linear on [M, 1].

Proposition 1.

1. There exists a unique value function V : [0, 1]→ R that satisfies (1).

2. There exists a threshold belief ML = 1−δ
2−δ(1+p) such that Loner invests if and only if

µ ≥ML. Furthermore, V is TLC with threshold ML (in fact, it is quasilinear).

Proof. See Proposition 3 for the general case.

Note that the agent’s threshold ML is smaller than 0.5 which is the threshold of the myopic
agent (an agent with a discount factor δ = 0). This is due to the value of information embedded
in active investment. At the threshold belief, the agent is willing to incur a cost of (1−2ML)x =
δ(1−p)x

2−δ(1+p) > 0 for the opportunity to learn about the state of the world.
Another important insight is that there are only three types of histories that will materialize

in equilibrium:

1. Continued investment: If Loner’s prior µL0 was higher than ML then as long as he has
not seen a payoff of πB his belief is either µL0 or 1 and he continues to invest.

2. Investment terminated: If µL0 ≥ML but at some point the agent observed πB then he
updated his belief to 0 and stopped investing.

3. Never invested: Of course, if µL0 < ML the agent will never invest.

3.2 Follower

To understand the role of learning by other’s actions, I now introduce a second agent to the
model - Follower. Like Loner, Follower can invest in the asset described above. Conditional on
the state this asset pays agents independent payoffs. While I assumed Loner can learn only by
active investment, Follower also observes Loner’s actions. These actions provide information
regarding Loner’s private signals and the state of the world. Specifically, in each period Follower
observes Loner’s investment decision before deciding on his own action. Figure 1 illustrates the
timeline of investment decisions and payments for both agents.

As pointed out in Section 3.1, there are three types of histories of Loner’s actions that
Follower may observe in equilibrium. If Loner never invested then Follower is an “isolated”
agent and his dynamic optimal choice problem is as described in Section 3.1. If Loner invested
in the past but at some point stopped investing, then Follower concludes that Loner observed
πB. He immediately updates his own belief to 0 and stops investing (without ever resuming
investment).

The interesting case is a history in which Loner invested in all previous periods. When
observing Loner investing one more period, Follower becomes more optimistic and his belief is
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Figure 1: Timeline of Investment Decisions and Payments
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updated according to µ 7→ µ
p+(1−p)µ . Otherwise, his belief is updated to 0. If Follower does not

invest himself then this is his only source of information. If he does invest, then with probability
p he receives a payment of zero and is left to learn only by Loner’s actions (as if he did not
invest in the first place). With probability 1 − p Follower’s own signal reveals the state of the
world and the information from Loner’s action is redundant.

Formally, denote Follower’s value function given Loner invested so far and given his own
action a by Ua, a ∈ {I,N}. Then Follower’s Bellman equation is given by:

U(µ) = max{UN (µ), U I(µ)} where (2)

UN (µ) = [p+ (1− p)µ]δU

(
µ

p+ (1− p)µ

)
U I(µ) = (2µ− 1)x+ pUN (µ) + (1− p)µδ x

1− δ
Proposition 2.

1. There exists a unique value function U : [0, 1] → R that satisfies (2). This function is
non-decreasing, continuous and convex.

2. U(µ) ≥ V (µ) for all µ ∈ [0, 1], meaning that Follower has positive gains from observing
Loner’s actions.

3. There exists a threshold belief MF = 1−δp
2−δp(1+p) ∈ (ML, 0.5) such that Follower invests if

and only if µ ≥MF , and U(·) is TLC with threshold MF . Specifically,

U(µ) = max

{
[p+(1−p)µ]δU

(
µ

p+ (1− p)µ

)
,

[
x

1− δ
+

x

1− δp2

]
µ− x

1− δp2

}
(3)

Proof. See Proposition 4 for the general case.

The fact that MF > ML is due to Follower’s “free-riding”. At the belief ML an isolated
agent would have started investing but since Follower has the privilege of observing Loner, the
gain from not investing is higher which makes this option more attractive. However, MF is
still lower than the threshold of the myopic agent, 0.5, since investing always provides excess
information regarding the state of the world.
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Figure 2: The Constant-State Model - Numeric Approximation of Value Functions and Simu-
lation of Beliefs and Total Investment when Loner Receives Bad News

Notes: Panel A depicts numeric approximations of Loner’s and Follower’s value functions for the parameters

x = 1, δ = 0.95 and p = 0.8. Panels B and C depict the dynamics in a simulation of this model in which both

agents have a prior belief of 0.25 ∈ (ML,MF ) and no news arrive until period 4 (both agents receive payments

of zero). In period 5 Loner observes πB and leaves the market in the following period. His exit is immediately

followed by Follower’s departure from the market.

3.3 Dynamics

The simple setting of constant state provides insights that will carry through to the stochastic
settings. As I will demonstrate, Follower’s “free-riding” induces asymmetric dynamics in beliefs
and investment. While the ascent of beliefs and investment occurs gradually, their decline
can be abrupt. Furthermore, agents’ optimism is accompanied by dispersion in beliefs, while
pessimistic beliefs are aligned.

An example of the dynamics arising in this model is depicted in Figure 2 (general results
are established in Section 4.2). In this example both agents have a prior belief that is above
Loner’s threshold but below Follower’s. Thus, Loner starts investing in period 0. In the first
five periods Loner does not receive any information, meaning he does not observe πθ, his belief
remains unchanged and he continues to invest. As for Follower, initially his belief is not high
enough to evoke investment and he prefers to passively observe Loner (“free-riding” effect).
Observing Loner staying in the market over time makes Follower more and more optimistic
until his belief crosses his own threshold and he enters the market. In Follower’s point of view,
“no news is good news”, meaning that observing Loner staying in the market makes him more
confident that the state of the world is G.

In the example of Figure 2 both agents receive payments of zero until period 4, meaning
that no new information arrives to the market. Nonetheless, Follower becomes highly optimistic
and his and Loner’s beliefs grow further and further apart. In other words, the disagreement
between the agents intensifies. In period 5 Loner observes πB which results in him updating
his belief to 0 in period 6 and exiting the market. At this point Follower experiences a “Wile
E. Coyote moment”. Like the cartoon character who runs off the cliff in pursuit of the Road
Runner only to find himself hovering in mid-air, Follower suddenly realizes that his optimistic
belief is groundless and he immediately exits the market. From this point on, both agents share
the same pessimistic belief, i.e., disagreement vanishes, and investment is halted indefinitely.
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4 Stochastic State

In this section I explore a more general setting in which the state of the world varies over
time. Specifically, I assume that θt is a stationary Markov Chain process with the state space
{G,B} and conditional probabilities Pr(θt = θ|θt−1 = θ) = λ for θ ∈ {G,B} and for some
λ ∈ (0.5, 1]. This means that the state of the world is persistent (in each period there is a
higher probability to remain in the same state than to switch) but transition to the other state
is equally likely under both states. With no other information, beliefs evolve according to
µ 7→ λµ+ (1− λ)(1− µ) = (2λ− 1)µ+ 1− λ and any initial belief converges over time to the
steady state 0.5.

4.1 Loner and Follower’s Value Functions

The generalization of Loner’s value function to the stochastic state setting is straightforward. It
only requires adjusting the evolution of beliefs to the possibility of state transition. Specifically,
Loner’s value function takes the following form:

V (µ) = max{V N (µ), V I(µ)} where, (4)

V N (µ) = δV
(

(2λ− 1)µ+ 1− λ
)

V I(µ) = (2µ− 1)x+ pV N (µ) + δ(1− p)[µV (λ) + (1− µ)V (1− λ)]

The following proposition characterizes the function V and shows that there exists a unique
threshold belief ML ∈ (1 − λ, 0.5) such that Loner invests only when his belief exceeds this
threshold.

Proposition 3. (Properties of Loner’s Value Function)

1. There exist unique value functions V : [0, 1] → R+ that satisfies (4). This function is
non-decreasing, continuous and convex.

2. There exists a threshold belief ML ∈ (1 − λ, 0.5) such that Loner invests if and only if
µ ≥ML, and his value function is TLC with threshold ML. Specifically,

V (µ) = max

{
δV
(

(2λ− 1)µ+ 1− λ
)
, αLµ+ βL

}

where αL = x(2−δ−δp)−(1−δ)(1−p)V (0)
(1−δλ)(1−δp)+δp(1−δ)(1−λ) , βL = x−(1−δλ)αL

1−δ , and ML = x−(1−p)[V (0)−βL]
(1+p)x−(1−p)[V (0)−βL]

Proof. All proofs are deferred to the Appendix.

Note that Loner’s belief evolves depending on periodic payoffs as follows:

µLt+1(πt) =


(2λ− 1)µLt + 1− λ if πt = 0

λ if πt = πG

1− λ if πt = πB

Further note that if µLt ≥ ML then (2λ − 1)µLt + 1 − λ ≥ ML as well.4 Therefore, Loner
will continue to invest as long he has not received bad news, i.e., has not observed πB. Once he
observes πB his belief is updated in the following period to 1− λ and he stops investing. While
µLt < ML Loner does not invest and his belief evolves according to µt+1 = (2λ− 1)µt + 1− λ.
This means that n periods after Loner observed πB his belief is 0.5 − 0.5(2λ − 1)n. Since this

4If µ ≥ 0.5 then (2λ− 1)µ+ 1− λ ≥ 0.5, and if ML ≤ µ < 0.5 then (2λ− 1)µ+ 1− λ > µ.
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process converges to 0.5, eventually Loner’s belief crosses his threshold and he starts investing.

More precisely, after observing πB Loner will not invest for n̄ ≡ b ln(1−2ML)
ln(2λ−1) c periods and will

resume investment in the (n̄+ 1)th period.
This means that in equilibrium, in each period t there are two types of states that are

relevant to Follower:

1. Loner will resume investment in n periods (n ∈ {1, ..., n̄}): This means that Loner
did not invest for n̄+ 1− n periods up until and including period t. In this case Loner’s
action in t+ 1 is known for certain (if n = 1 he will invest in the following period, and if
n > 1 he will not) so it will be uninformative and Follower will update his belief according
to µFt+1 = (2λ− 1)µFt + 1− λ.

2. Loner invested in t: In this case Follower’s belief µFt+1 is distributed according to
the probability that Loner will invest another period or will stop investing (see proof of
Proposition 4 for a formal definition).

Formally, the possible states that Follower may be facing can be categorized by a couple
(µFt , nt) where µFt is Follower’s belief, and nt ∈ {0, 1, ..., n̄} is the number of periods remaining
until Loner resumes investment (nt = 0 indicates that Loner invested in t).

Follower updates his belief µFt according to his private signals and Loner’s actions as in the
constant state setting, with the additional adjustment to the possibility of state transition. The
prominent difference from the constant state setting is in the evolution of nt. While Loner is
investing (nt = 0), Follower’s expected utility depends on whether Loner will remain in the
market for another period. If he does, then the state variable nt+1 remains zero. Otherwise,
Follower’s deduces that Loner observed πB in period t and nt+1 updates to n̄. If nt ≥ 1
then necessarily nt+1 = nt − 1 (the “counter” for the number of periods until Loner resumes
investment decreases by 1). Thus, Follower’s value function has a recursive structure:

U(µ, n) = max
{
UN (µ, n), U I(µ, n)

}
where, (5)

UN (µ, 0) =[p+ (1− p)µ]δU

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ, 0

)
+ (1− p)(1− µ)δU(1− λ, n̄),

U I(µ, 0) =(2µ− 1)x+ pUN (µ, 0)+

(1− p)µδU(λ, 0) + (1− p)(1− µ)δ
[
pU(1− λ, 0) + (1− p)U(1− λ, n̄)

]
and for n ∈ {1, ..., n̄},

UN (µ, n) =δU
(

(2λ− 1)µ+ 1− λ, n− 1
)
,

U I(µ, n) =(2µ− 1)x+ pUN (µ, n) + (1− p)δ
[
µU
(
λ, n− 1

)
+ (1− µ)U

(
1− λ, n− 1

)]
An important difference between the stochastic state setting and the constant state setting

is that in the latter if an agent stopped investing he will never resume investment. However,
when the state is stochastic even a belief of zero will eventually converge to 0.5 in which it is
clearly optimal for the agent to invest. Inter alia, this implies that V (0) and U(0, n) are no
longer equal to zero.

The following proposition characterizes Follower’s value function and shows that for every
n there exists a unique threshold belief MF

n ∈ (1− λ, 0.5) such that Follower invests only when
his belief exceeds this threshold.

Proposition 4. (Properties of Follower’s Value Function)
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1. There exists a unique value function U : [0, 1] × {0, ..., n̄} → R+ that satisfies (5). This
function is non-decreasing, continuous and convex in the first argument.

2. U(µ, n) ≥ V (µ) for all n = 0, ..., n̄ and µ ∈ [0, 1].

3. For all n = 0, ..., n̄ there exists a unique threshold belief MF
n ∈ (1 − λ, 0.5) such that

Follower invests in state (µ, n) if and only if µ ≥MF
n , and U(µ, n) is TLC .

4. Define U(µ, n) as in (2) for all n ∈ N (i.e, extend the definition for n̄+ 1, n̄+ 2, ...) then
lim
n→∞

U(µ, n) = V (µ). This means that as Loner’s entry is further in the future, Follower

acts as an isolated agent.

Figure 3 depicts numeric approximations of Loner and Follower’s thresholds as a function
of n - the number of periods until Loner is known to enter the market in equilibrium. The
figure illustrates that when Loner’s entry is close (n is small) Follower’s incentive to invest is
lower than Loner’s and his threshold exceeds ML. This is because free information will become
available in the near future. As n increases this promise becomes less valuable and Follower’s
incentive to actively invest increases (his threshold decreases). Note that for some values of n
Follower’s threshold is lower than ML. This is because the promise of Loner’s entry makes it
less costly for Follower to enter the market and receive a bad outcome. To be more concrete,
consider a belief of 0.3 when n = 12. Note that 0.3 ∈ (MF

12,M
L). An isolated agent like Loner

that is facing a belief of 0.3 prefers to stay out of the market since his entry will likely result
in a low signal that will keep him out of the market for a long time (22 periods). However,
Follower knows that in any case Loner will enter the market in 12 periods. When this occurs,
Follower will receive information that will potentially be positive. Thus, Follower’s expected
loss from entering today and receiving bad news is lower. When n is large the promise of
future information has a very small effect on Follower’s incentives and his threshold for entry
approaches that of an isolated agent ML.

Even though Follower’s threshold may be lower than Loner’s for some values of n, Section
4.2 will show that for λ close enough to 1 Follower will enter the market after Loner.

Figure 3: Numeric Approximation of Agents’ Investment Thresholds

Notes: The figure depicts numeric approximations of Loner and Follower’s thresholds (ML and MF
n ,

respectively) for the parameters x = 1, δ = 0.95, p = 0.8 and λ = 0.98. Thresholds are depicted as a function of

n, the number of periods until Loner is known to return to the market.
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4.2 Asymmetric Dynamics

In this section I discuss the dynamics that arise in equilibrium. The pattern of investment in
equilibrium tends to be asymmetric. When the state of the world is persistent enough, entry to
the market is gradual, meaning that Loner always enters before Follower. However, exit from
the market is generally abrupt, meaning that both agents leave the market at the same time.
Furthermore, after both agents leave recovery takes a long time, meaning that investment is
re-initiated long after it ceased.

First, I will establish that entry to the market is gradual when λ is close enough to 1.5 This
is due to Follower’s “free-riding”, meaning that in equilibrium he will prefer to wait and see
Loner stay in the market for a while before entering himself:

Proposition 5. (Free-Riding and Gradual Entry)
Assume both agents share the same belief and Loner is out of the market. If λ is close

enough to 1 then Follower will enter the market strictly after Loner.

Next, I show that exit from the market is more likely to be abrupt than gradual, meaning
that the probability that both agents exit in the same period in equilibrium is higher than the
probability that they exist one after the other. Note that the former event occurs whenever
Loner observes a bad signal and exits the market, since Follower will immediately update his
belief to 1− λ and exit as well. The latter event occurs only if Follower observes bad news but
Loner observes an uninformative signal.

Proposition 6. (Abrupt vs. Gradual Exit)
Assume both agents were in the market in period t− 1 and some agent leaves the market in

period t. The probability of an abrupt exit in t (both agents leave the market) is 1
1+p while the

probability that only one agent exits is smaller and equals p
1+p .

Proof. In equilibrium, an exit occurs in t with probability (1 − p2)1{θt=B} where 1{θt=B} is
the indicator function that equals one if θt = B and zero otherwise. Given an exit at t, the

probability that Loner exits and thus the exit is abrupt, equals
(1−p)1{θt=B}
(1−p2)1{θt=B}

= 1
1+p .

Finally, after both agents leave the market recovery will be slow. Specifically, it will take n̄
periods for Loner to re-enter the market and if λ is high, Follower will enter even longer after
that.

Corollary 7. (Slow Recovery)

If λ is close enough to 1, no agent will enter the market in the n̄ = b ln(1−2ML)
ln(2λ−1) c periods after

Loner exited.

An example of the asymmetric dynamics in the model is depicted in Figure 4. In this
example, both agents have a prior belief that is lower than Loner’s threshold so initially they
are both out of the market. As time progresses their belief updates according to the Markovian
process until it crosses ML in period 4. At this point, Loner enters the market but Follower
prefers to “wait and see” how events unfold. In this example, Loner does not receive any news in
periods 4-7 so he remains in the market. Observing Loner continuing to invest makes Follower
more and more optimistic until his belief crosses his threshold and he enters the market in period
6. Note that this dynamic of gradual entry occurs without any actual news being received in
the market. In period 8, Loner is assumed to observe an adverse signal, causing him to update

5The focus on large λ’s is for two reasons. First, unlike the case of λ = 1, for λ < 1 thresholds cannot be
derived analytically and the approximation to λ = 1 allows to characterize them. Second, as demonstrated in
Figure 3, Followers thresholds can be lower than those of Loner making Follower willing to“test the ground”
before Loner enters. This is not the case when λ is close to 1 since high persistence of the state makes “testing
the ground” more costly.
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Figure 4: The Stochastic-State Model - Numeric Approximation of Value Functions and Simu-
lation of Beliefs and Total Investment when Loner Receives Bad News

Notes: Panel A depicts numeric approximations of Loner and Follower’s value functions for the parameters

x = 1, δ = 0.95, p = 0.8 and λ = 0.98. For Follower, the approximation is of U(µ, 0), i.e., his value function

while Loner is investing. Panels B and C depict the dynamics in a simulation of this model in which both agents

have a prior belief of 0.27 < ML and no news arrive until Loner observes πB in period 8. In panel B solid lines

represent agents’ beliefs and dashed lines represent thresholds. Note that Follower’s threshold is state-dependent

(see Figure 3 and associated discussion).

his belief downwards and exit the market. This leads Follower to experience a “Wile E. Coyote
moment” and exit as well. Consequently, activity plunges. Note that in period 31, i.e., n̄ = 22
periods after observing πB, Loner resumes investment and a new cycle of investment and learning
initiates. As in the constant state setting, one can notice that disagreement between agents is
more prominent when activity is high and private information is generated. In contrast, when
activity plunges due to Loner leaving the market, disagreement also vanishes.

4.3 When Follower Chooses to Test the Waters

Proposition 5 established that Followers enters the market after Loner if the state of the world
is persistent enough, i.e., when λ is close to one. In this section I demonstrate that if the state
is more fickle, it may be that Follower will choose to “test the waters” and enter before Loner
in equilibrium.

Panels C and D in Figure 5 depict a simulation of the model with λ = 2/3, p = 0.1, x = 1
and δ = 0.95. With these parameters Loner is known to renter the market n̄ = 2 periods after
he exits. The prior belief in the simulation is assumed to be such that Loner enters the market
in period 0 and Follower stays out. Furthermore, it is assumed that Loner observes a bad signal
in period 0 but afterwards no meaningful signal arrives to the market. Following the arrival of
bad news, Loner exits the market in period 1 leading to the update of both agents’ beliefs to
1−λ = 1/3 in period 1. In period 2 both agents update their belief according to the Markovian
process to 4/9 which is above Follower’s threshold but below Loner’s. At this point Follower
enters the market without observing any reassuring news from Loner. This is because Follower
knows that Loner will enter the market in the next period so the cost of “testing the waters”
is relatively low. Without observing good news in period 2, Follower is not optimistic enough
to stay in the market and he exits in period 3. He renters only after observing Loner staying in
the market for two periods.
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Figure 5: Numeric Approximation of Value Functions and Simulation of Beliefs and Investment
with a Fickle State of the World

Notes: Panel A depicts numeric approximations of Loner and Follower’s value functions for the parameters

x = 1, δ = 0.95, p = 0.1 and λ = 2/3. For Follower, the approximation is of U(µ, 0), i.e., his value function while

Loner is investing. Panel B depicts numeric approximations of agents’ thresholds as a function of the number of

periods remaining until Loner enters the market, n. Panels C and D depict the dynamics in a simulation of this

model in which both agents have a prior belief of 0.47 ∈ (ML,MF
0 ), Loner observes a bad signal in period 0 and

afterwards no news arrive to either agent. Panel C depicts the evolution of agents’ beliefs (solid lines) and

numeric approximations of their thresholds (dashed lines). Panel D depicts active investors in each period.

5 The Public Information Case

The private information setting of previous sections endogenously generates asymmetry in the
quality of information embodied in Loner’s actions. While an exit decisively indicates that Loner
observed a bad signal, staying in the market only indicates that Loner has not yet observed
such a signal, meaning that so far he received payoffs of zero and πG. One might wonder if the
difference in information quality is not responsible for some (or all) of the asymmetric dynamics
in the model.

For this purpose in this section I compare Follower’s behavior to a model with public in-
formation (I still restrict attention to a setting in which Follower observes Loner but not vice
versa). I assume that there are two followers in the market: Follower A that observes Loner’s
actions as in the baseline model, and Follower B that observes Loner’s signals. By allowing
Follower B to observe Loner’s signals I break the asymmetric quality of information that is
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generated with private information.
As it turns out, this has no qualitative effect on the main results. If λ is close enough to

1, Follower B still enters the market strictly after Loner and exits with him if Loner observes a
bad signal. They key insight is that gradual entry is due solely to the free-riding effect which is
of course also relevant for Follower B. An abrupt exit occurs when Follower realizes that Loner
observed a bad signal and this happens whether he sees Loner receive that signal or just sees
him leave the market.

However, public information does affect Follower’s incentive to enter and the magnitude
of the asymmetry in dynamics in the since that it affects the timing of Follower’s entry to
the market (after Loner has already entered). As I will show in this section, since Follower B
observes information of higher quality when Loner is in the market, his cost from entering and
observing adverse news is lower than Follower A’s and thus his threshold for entry is also lower.
However, if the state is persistent enough this difference is small and does not stimulate more
investment in equilibrium. In fact, generally Follower B enters the market after Follower A,
i.e., public information defers entry and experimentation. Since the result of abrupt exit is still
maintained, this means that public information magnifies the asymmetry in dynamics.

5.1 Follower B

Denote Follower B’s value function by UB(µ, n). It differs from Follower A’s value function only
when Loner is in the market and Follower does not observe a meaningful signal (i.e, receives a
payoff of zero). This is because when Loner is out of the market both followers are exposed to
the same information, and when their signal is informative the information they observe from
Loner is redundant. In other words, UB differs from U in UNB (µ, 0).

Formally, Follower B’s value function is defined as follows:

UB(µ, n) = max{UNB (µ, n), U IB(µ, n)}

where,

UNB (µ, 0) =pδUB

(
(2λ− 1)µ+ 1− λ, 0

)
+ (1− p)δ

[
µUB(λ, 0) + (1− µ)UB(1− λ, n̄)

]
,

U IB(µ, 0) =(2µ− 1)x+ pUNB (µ, 0)+

(1− p)µδUB(λ, 0) + (1− p)(1− µ)δ
[
pUB(1− λ, 0) + (1− p)UB(1− λ, n̄)

]
and for n ∈ {1, ..., n̄},

UNB (µ, n) =δUB

(
(2λ− 1)µ+ 1− λ, n− 1

)
,

U IB(µ, n) =(2µ− 1)x+ pUNB (µ, n) + (1− p)δ
[
µUB

(
λ, n− 1

)
+ (1− µ)UB

(
1− λ, n− 1

)]
Similar arguments to those given in the proof of Proposition 4 can be used to show that

it holds for UB as well, meaning that Follower B’s value function shares the same properties
as Follower A’s value function. However, because Follower B observes information of higher
quality, his value function is higher than Follower A’s:

Proposition 8. UB(µ, n) ≥ U(µ, n) for all n = 0, ..., n̄ and µ ∈ [0, 1].

5.2 The Effect of Public Information on Follower’s Incentives and on Asym-
metric Dynamics

First, I will formally show that even though public information eliminates differences in signal
quality that arise with private information, it still generates asymmetric dynamics. Note that
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the results of abrupt versus gradual entry (Proposition 6) and slow recovery (Corollary 7) still
hold in the public information setting, i.e., if Follower A is substituted by Follower B. To
complete the argument of asymmetric dynamics, the following proposition shows that Follower
B also free-rides on Loner’s information and enters the market after him when the state of the
world is persistent enough:

Proposition 9. (Free-Riding and Gradual Entry with Public Information)
Assume Loner and Follower B share the same belief and Loner is out of the market. If λ is

close enough to 1 then Follower B will enter the market strictly after Loner.

Next, Proposition 10 highlights the differences between the two information settings: it
compares the two followers’ incentives to enter the market and their behavior in equilibrium.

Proposition 10. (Incentives and Entry - Public vs. Private Information)

1. Denote Follower B’s threshold when Loner is in the market (i.e., n = 0) by MFB
0 , then

MFB
0 ≤MF

0 .

2. MFB
0 = MF

0 when λ = 1.

3. In equilibrium, if λ is close enough to 1, Follower B enters the market before Follower A
if and only if Loner receives a good signal πG while both followers are out.

As aforesaid, the free-riding effect holds in both information settings and in equilibrium both
followers enter the market after Loner. The question then remains which follower enters first
after Loner? The first item in Proposition 10 states that while Loner is in the market Follower B
has a (weakly) lower threshold for investment compared to Follower A. This is because Follower
B has a smaller cost for entering the market and receiving bad news. Nonetheless, item 3 implies
that Follower B will generally enter after Follower A:

Corollary 11. Public information is more likely to defer entry and experimentation.
In equilibrium, if λ is close enough to 1, the probability that Follower B will enter before Follower
A is smaller than 0.5.

Figure 6 depicts a similar simulation to the one from Figure 4, but this time with the two
types of followers. Note that Follower B’s threshold is lower than A’s but it is quite close.
Further note that while Follower B is out of the market, his belief coincides with Loner’s.
Because Loner doesn’t receive any news until period 8 in this example, their beliefs remain
relatively low and do not cross Follower B’s threshold. Thus, Follower B does not even enter
the market. However, Follower A is more optimistic and his belief crosses his threshold after
two periods. This example demonstrates the general case in which public information defers
entry and experimentation. Follower B would have entered before A only if Loner would have
received a good signal in period 4 or 5, while Follower A is still out. But this is highly unlikely:

Pr
(
πLt = πG ∨ πLt+1 = πG

∣∣∣Loner entered in t, θt

)
=

{
(1− λ)(1− p) if θt = B

1− p+ pλ(1− p) if θt = G

Since the state is more likely to be B than G when Loner enters, the total probability is
very low (the general proof is given the Appendix):

Pr
(
πLt = πG ∨ πLt+1 = πG

∣∣∣Loner entered in t
)
<

0.5
[
(1− λ)(1− p) + 1− p+ pλ(1− p)

]
= 0.5

[
0.004 + 0.396

]
= 0.2
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Figure 6: Public vs. Private information - Simulation of Beliefs and Total Investment when
Loner Receives Bad News

Notes: The figure depicts a simulation of the model with parameters x = 1, δ = 0.95, p = 0.8 and λ = 0.98. The

simulation includes three agents: Loner, Follower A which observes Loner’s actions and Follower B which

observes Loner’s signals. In the simulation all agents have a prior belief of 0.27 < ML and no news arrive until

Loner observes πB in period 8. Panel B depicts the evolution of beliefs (solid lines) and thresholds (dotted

lines) which are state-dependent. Panel C depicts aggregate investment.

6 Evolution of Disagreement over the Business Cycle

As demonstrated in the example of Figure 4, agents’ beliefs can vary substantially. Further-
more, this variation is not constant over the business cycle. Specifically, agents’ beliefs become
perfectly aligned once Loner exits the market: no matter if Follower is in or out at that point,
Loner’s exit signals that he observed πB so both agents update their beliefs to 1− λ and they
remain aligned for the next n̄ periods until Loner re-enters the market.

Before elaborating on the dynamics of disagreement, I should formally define what it is.
Disagreement is a concept that stands for the dispersion of beliefs. It is therefore naturally
captured by the variance in periodic beliefs V ar(µit) = 0.25(µLt −µFt )2. To discuss the cyclicality
of this variable I compare it to total investment which is the number of agents in the market
and may equal 0, 1 or 2.

The above discussion implies that when total investment is zero then disagreement also
equals zero. Of course, if some agent is in the market then he produces private signals which
can drive beliefs apart, meaning that disagreement is positive when total investment is posi-
tive. It follows that disagreement is expected to be pro-cyclical, i.e., positively correlated with
investment.

Panel A in Table 1 shows this correlation in model simulations with different values of p
and λ. It is apparent that for most parameter values this correlation is indeed positive. The
exceptions are low values of λ combined with high values of p which generate slightly negative
correlations. For these values payoffs are extremely uninformative: when λ approaches 0.5 the
state is approximately white noise and when p approaches 1 payoffs are almost always 0 and
are essentially independent of the state. Thus, in these settings disagreement is always very
low and slightly rises only when Follower leaves the market before Loner (i.e., total investment
equals 1), causing the small negative correlation.

To understand the role of the information structure in generating these results, Panel B
shows the correlation between investment and disagreement in simulations of a similar model
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Table 1: Correlation between Activity and Disagreement from Simulations with Different Model
Parameters

A. Loner and Follower (Baseline)

λ

p

B. Two Loners

λ

p

Color Legend:

Note: Each entry in a table shows the correlation between total investment and disagreement V ar(µit) = 0.25(µFt −
µLt )2 for different values of p and λ (note that λ is assumed throughout the paper to be larger than 0.5 and since
for λ = 1 a simulation futile I simulate over values of λ in (0.5, 1)). Panel A shows results from simulations of
the baseline model with Loner and Follower; Panel B shows results from a model with two isolated agents that
do not learn from each other. In all simulations: δ = 0.95, x = 1, number of observations = 106.

with two isolated agents that do not observe each other’s actions. Comparing the two tables
shows that without the additional learning mechanism of observing another agent’s actions,
the correlation between activity and disagreement falls and might even be very negative. This
is true even though the second model also incorporates private signals which are generated
only when activity is high. The lower correlation stems from periods of zero activity since any
disagreement that was formulated when one agent left the market before the other is maintained
as long as they are both out. As aforesaid, this is not the case in the baseline model in which
zero activity necessarily means that beliefs are aligned.

7 Conclusion

The phenomenon of slow booms and sudden crashes is prevalent in many economic indicators
of activity and beliefs (e.g., expectations). This paper showed that such asymmetries arise in a
setting in which actions generate information and agents learn from each other. The mechanism
was studied for a simple setting of two agents: an isolated agent (Loner) and an observer
(Follower). In an otherwise completely symmetric setting, I showed that agents enter the
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market gradually but tend to exit simultaneously. Since Follower “free-rides” on the information
generated by Loner, he prefers to observe him stay in the market for a while before entering
himself. This is the cause for the gradual increase in activity. On the other hand, Follower
acts immediately upon observing Loner exit the market, as this action decisively indicates that
Loner observed bad news.

In essence, this mechanism is independent of the quality of information observed by Follower,
i.e., Loner’s actions or signals. However, if Follower observes Loner’s signals and not just is his
actions, his threshold for entry is lower as his access to superior information makes it less costly
for him to enter the market. Nonetheless, the fact that he can tell if Loner is in the market
because he observed good news or because he had not yet observed bad news, on average makes
him wait out of the market longer than when he observes Loner’s actions.
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Appendix A Proofs

A.1 Proof of Proposition 3 (Properties of Loner’s Value Function)

1. Define the mappings:

TL(f)(µ) = max

{
δf
(

(2λ− 1)µ+ 1− λ
)
,

(2µ− 1)x+ pδf
(

(2λ− 1)µ+ 1− λ
)

+ δ(1− p)[µV (λ) + (1− µ)V (1− λ)]

}
It is easy to verify that TL satisfies Blackwell’s conditions for a contraction mapping
and preserves monotonicity, continuity and convexity. It follows that this mapping has a
unique fixed point, V , that is non-decreasing, continuous and convex.6

2. Since V ≥ 0 it is clear that Loner invests when µ ≥ 0.5. Thus there exists a threshold
ML ≤ 0.5 such that V N (ML) = V I(ML) and Loner invests in [ML, 1]. Furthermore, note
that if µ ∈ [ML, 1] then also (2λ−1)µ+1−λ ∈ [ML, 1] (if µ ≥ 0.5 then (2λ−1)µ+1−λ ≥
0.5, and if ML ≤ µ ≤ 0.5 then µ < (2λ− 1)µ+ 1− λ). This implies that ∀µ ∈ [ML, 1],

V I(µ) = (2µ− 1)x+ pδV I
(

(2λ− 1)µ+ 1− λ
)

+ δ(1− p)
[
µV (λ) + (1− µ)V (1− λ)

]
It can now be verified that in this segment V (µ) = αLµ+ βL for αL and βL as specified

in the proposition, and that ML = x−(1−p)[V (0)−βL]
(1+p)x−(1−p)[V (0)−βL]

.

Note that it must be that ML > 1−λ. Otherwise, if ML ≤ 1−λ, then V (µ) = αLµ+βL

for all µ ≥ 1− λ which implies that

V (µ) = max

{
δ
[
αF
(

(2λ− 1)µ+ 1− λ
)

+ βF
]
, (2µ−1)x+δ

[
αF
(

(2λ− 1)µ+ 1− λ
)

+ βF
]}

and thus ML = 0.5 but this is a contradiction since 0.5 > 1− λ.

It remains to show that ML is the unique threshold for investment. Let IGL(µ) =
V I(µ)− V N (µ) denote Loner’s gain from investment. I will show that IGL is increasing
which will imply that ML is the unique belief that nullifies IGL.

IGL(µ) = (2µ− 1)x+ (1− p)δ
[
µV (λ) + (1− µ)V (1− λ)− V

(
(2λ− 1)µ+ 1− λ

)]
=

[(1 + p)µ− 1]x+ (1− p)
[
µV (1) + (1− µ)V (0)− δV

(
(2λ− 1)µ+ 1− λ

)]
6Blackwell’s sufficient condition for a contraction: Let X ⊆ Rn and let B be a space of bounded functions

f : X → R. Let T : B → B be a mapping that satisfies: (1) Monotonicity: if f ≤ g then Tf ≤ Tg. (2)
Discounting: there exists δ ∈ (0, 1) such that T [(f + a)](x) ≤ Tf(x) + δa for all f ∈ B, a ≥ 0, x ∈ X. Then T is
a contraction mapping.
If T satisfies these conditions and B is a complete space then following Banach’s fixed point theorem, T has a
unique fixed point V in B. Furthermore, lim

n→∞
Tn(f) = V for every f ∈ B.

In the context of Proposition 3, B is the space of bounded, non-decreasing, continuous and convex functions.
Thus V ’s existence and its properties follow from the fact that TL is a contraction mapping and TL(B) ⊆ B.
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IGL(µ+ ∆)− IGL(µ) = (1 + p)x∆ + (1− p)
[
V (1)− V (0)

]
∆−

(1− p)δ
[
V
(

(2λ− 1)(µ+ ∆) + 1− λ
)
− V

(
(2λ− 1)µ+ 1− λ

)]
≥

(1 + p)x∆ + (1− p)
[
V (1)− V (0)

]
∆− (1− p)δαL(2λ− 1)∆ =

(1 + p)x∆ + (1− p)
[
αL + βL − V (0)

]
∆− (1− p)δαL(2λ− 1)∆ =

(1 + p)x∆ + (1− p)αL
[
1− δ(2λ− 1)

]
∆− (1− p)

[
V (0)− βL

]
∆

where the inequality in the second line is due to V ′s convexity which implies that the

maximal slope of V is αL. Now, since ML = x−(1−p)[V (0)−βL]
(1+p)x−(1−p)[V (0)−βL]

∈ (0, 0.5] it follows that

(1− p)[V (0)− βL] ≤ x, so:[
IGL(µ+ ∆)− IGL(µ)

]
/∆ ≥ (1− p)αL

[
1− δ(2λ− 1)

]
> 0

A.2 Proof of Proposition 4 (Properties of Follower’s Value Function)

Before turning to the proof of Proposition 4, I will prove two lemmas. Lemma 12 shows that
U(µ, 0), Follower’s value function when Loner is in the market, can be written as the sum of a
“self contained” value function W and a linear function. By “self contained” I mean that W
is only a function of µ, as opposed to U(µ, 0) that also depends on U(µ, n̄). In other words, a
Follower that maximizes according to W does not take into account that Loner may exit the
market. The purpose of this lemma is to facilitate the proofs of some of U(µ, 0)’s properties -
those that are preserved when adding a linear function such as convexity and the threshold for
investment. Lemma 13 is used to prove W ’s convexity.

Lemma 12. U(µ, 0) can be written as the sum of a linear function and a function W as follows:

U(µ, 0) = W (µ) + aµ+ b (6)

where,

W (µ) = max{WN (µ),W I(µ)},

WN (µ) = [p+ (1− p)µ]δW

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)
+ (1− p)(1− µ)δW (1− λ),

W I(µ) = (2µ− 1)x+ pWN (µ) + δ(1− p)
[
µW (λ) + (1− µ)W (1− λ)

]
and

[a, b] =
(1− p)[W (0)− U(0, n̄)]

(1− δλ)(1− δp) + δp(1− δ)(1− λ)

[
1− δ, −(1− δλ)

]
Proof. Denote f(µ) = U(µ, 0)−W (µ), thus:

U(µ, 0) = W (µ)+f(µ) = max

{
UN (µ)+

[
WN (µ)−UN (µ, 0)+f(µ)

]
, U I(µ, 0)+

[
W I(µ)−U I(µ)+f(µ)

]}
So necessarily f(µ) = UN (µ, 0) −WN (µ) = U I(µ, 0) −W I(µ). To find f I take an “educated
guess” that it is linear and solve the two equations:

aµ+ b = UN (µ, 0)−WN (µ) =

[p+(1−p)µ]δ

[
a(2λ− 1)

µ

p+ (1− p)µ
+ a(1− λ) + b

]
+(1−p)(1−µ)δ

[
U(1−λ, n̄)−W (1−λ)

]
=

δ
[
a(2λ− 1)µ+ [p+ (1− p)µ][a(1− λ) + b]

]
+ (1− p)(1− µ)δ

[
U(1− λ, n̄)−W (1− λ)

]
=
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aµ+ b = U I(µ, 0)−W I(µ) =

p[aµ+b]+δ(1−p)
[
µ(aλ+b)+(1−µ)

[
pU(1−λ, n̄)−W (1−λ)

]]
+(1−p)2(1−µ)δU(1−λ, n̄) =

p[aµ+b]+δ(1−p)
[
µ(aλ+b)+(1−µ)p

[
a(1−λ)+b

]]
+(1−p)2(1−µ)δ

[
U(1−λ, n̄)−W (1−λ)

]
Both equations are equivalent to:

aµ+ b = δ
[
µ(aλ+ b) + (1− µ)p

[
a(1− λ) + b

]]
+ (1− p)(1− µ)

[
U(0, n̄)−W (0)

]
which yields the solution:[

a
b

]
=

[
1− δλ 1− δ

−δp(1− λ) 1− δp

]−1

·
[

0
(1− p)[U(0, n̄)−W (0)]

]
=

(1− p)[U(0, n̄)−W (0)]

(1− δλ)(1− δp) + δp(1− δ)(1− λ)

[
−(1− δ)
1− δλ

]

Lemma 13. Let f : A → R+ be a real function such that 0 ∈ A ⊆ R. Define g : A → R as
follows:

g(x; f) = [p+ (1− p)x]f

(
(2λ− 1)

x

p+ (1− p)x
+ 1− λ

)
If f is increasing and convex (concave) then g is also increasing and convex (concave).

Proof. Let 0 ≤ x < y ≤ 1 and c ∈ (0, 1). From the convexity of f it follows that,

f

(
(2λ− 1)

cx+ (1− c)y
p+ (1− p)[cx+ (1− c)y]

+ 1− λ
)
≤

f

(
(2λ− 1)

x

p+ (1− p)x
+ 1− λ

)
+

(1− c)p[f(y)− f(x)](2λ− 1)(y − x)

[p+ (1− p)x][p+ (1− p)[cx+ (1− c)y]]

and that,

f

(
(2λ− 1)

cx+ (1− c)y
p+ (1− p)[cx+ (1− c)y]

+ 1− λ
)
≤

f

(
(2λ− 1)

y

p+ (1− p)y
+ 1− λ

)
− cp[f(y)− f(x)](2λ− 1)(y − x)

[p+ (1− p)y][p+ (1− p)[cx+ (1− c)y]]

Now,

g(cx+(1−c)y; f) =
[
p+(1−p)[cx+(1−c)y]

]
f

(
(2λ− 1)

cx+ (1− c)y
p+ (1− p)[cx+ (1− c)y]

+ 1− λ
)

=

c[p+ (1− p)x]f

(
(2λ− 1)

cx+ (1− c)y
p+ (1− p)[cx+ (1− c)y]

+ 1− λ
)

+

(1− c)[p+ (1− p)y]f

(
(2λ− 1)

cx+ (1− c)y
p+ (1− p)[cx+ (1− c)y]

+ 1− λ
)
≤

c[p+ (1− p)x]f

(
(2λ− 1)

x

p+ (1− p)x
+ 1− λ

)
+ c

(1− c)p[f(y)− f(x)](2λ− 1)(y − x)

p+ (1− p)[cx+ (1− c)y]
+

(1− c)[p+(1−p)y]f

(
(2λ− 1)

y

p+ (1− p)y
+ 1− λ

)
− (1− c)cp[f(y)− f(x)](2λ− 1)(y − x)

p+ (1− p)[cx+ (1− c)y]
=

cg(x; f) + (1− c)g(y; f)
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I now turn to the proof of Proposition 4.

Proposition 4.

1. There exists a unique value function U : [0, 1] × {0, ..., n̄} → R+ that satisfies (5). This
function is non-decreasing, continuous and convex in the first argument.

2. U(µ, n) ≥ V (µ) for all n = 0, ..., n̄ and µ ∈ [0, 1].

3. For all n = 0, ..., n̄ there exists a unique threshold belief MF
n ∈ (1 − λ, 0.5) such that

Follower invests in state (µ, n) if and only if µ ≥MF
n , and U(µ, n) is TLC .

4. Define U(µ, n) as in (5) for all n ∈ N (i.e, extend the definition for n̄ + 1, n̄ + 2, ...) then
lim
n→∞

U(µ, n) = V (µ). This means that as Loner’s entry is further away, Follower acts as

an isolated agent.

Proof.

1. The set of states Follower may be facing is S = [0, 1]× {0, ..., n̄}. Denote by Qa(s, s′) the
probability of transition from state s′ to state s, depending on Followers action a.

If Follower chooses not to invest (a = N):

QN
(
s, (µ, 0)

)
=


p+ (1− p)µ if s =

(
(2λ− 1) µ

p+(1−p)µ + 1− λ, 0
)

(1− p)(1− µ) if s = (1− λ, n̄)

0 otherwise

For n ∈ {1, ..., n̄}, QN
(
s, (µ, n)

)
=

{
1 if s =

(
(2λ− 1)µ+ 1− λ, n− 1

)
0 otherwise

If Follower chooses to invest (a = I):

QI
(
s, (µ, 0)

)
=



p[p+ (1− p)µ] if s =
(

(2λ− 1) µ
p+(1−p)µ + 1− λ, 0

)
(1− p)µ if s = (λ, 0)

(1− p)p(1− µ) if s = (1− λ, 0)

(1− p)(1− µ) if s = (1− λ, n̄)

0 otherwise

For n ∈ {1, ..., n̄}, QI
(
s, (µ, n)

)
=


p if s =

(
(2λ− 1)µ+ 1− λ, n− 1

)
(1− p)µ if s = (λ, n− 1)

(1− p)(1− µ) if s = (1− λ, n− 1)

0 otherwise

Follower’s dynamic choice problem (5) can then be written as follows:

U(µ, n) = max

{
δ
∑
s∈S

U(s)QN
(
s, (µ, n)

)
, (2µ− 1)x+ δ

∑
s∈S

U(s)QI
(
s, (µ, n)

)}

Now, define the mapping:

TF (f)(µ, n) = max

{
δ
∑
s∈S

f(s)QN
(
s, (µ, n)

)
, (2µ− 1)x+ δ

∑
s∈S

f(s)QI
(
s, (µ, n)

)}
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It is easy to verify that TF satisfies Blackwell’s condition for a contraction mapping and
preserves monotonicity and continuity in µ. It follows that this mapping has a unique
fixed point, U(µ, n), which is non-decreasing and continuous in µ.

To show that U(µ, 0) is convex in µ it suffices to show that W (µ) from Lemma 12 is
convex. Following Lemma 13, W (µ) is a maximum of two convex functions and thus
convex. Now, from the recursive structure of U(µ, n) for n = 1, ..., n̄ it is clear that these
functions are also convex in µ.

2. Following Equation (5), note that for all n = 1, ..., n̄ we can write U(µ, n) = TLU(µ, n−1)
where TL is the mapping defined in Proposition 3 whose fixed point is V . Further note

that the space B ≡
{
f |f : [0, 1] × {0, ..., n̄} → R

}
is homeomorphic to the space B̃ ≡{

f̃ |f̃ : [0, 1] → Rn̄+1
}

. Thus, TF that is defined on B has an equivalent transformation

T̃F that operates on B̃ and its fixed point is Ũ(µ) ≡
(
U(µ, 0), ..., U(µ, n̄)

)′
:

T̃F (f̃)(µ) = T̃F


f(µ, 0)
f(µ, 1)

...
f(µ, n̄)

 ≡

TF (f)(µ, 0)
TF (f)(µ, 1)

...
TF (f)(µ, n̄)

 =


max

{
δ
∑

s∈S f(s)QN
(
s, (µ, 0)

)
, (2µ− 1)x+ δ

∑
s∈S f(s)QI

(
s, (µ, 0)

)}
TL(f)(µ, 0)

...
TL(f)(µ, n̄− 1)


Since Ũ is T̃F ’s fixed point, in order to show that it is greater than Ṽ ≡

(
V, ..., V

)′
, it

suffices to show that if f̃(µ) = (f(µ, 0), ..., f(µ, n̄))′ ≥ Ṽ (µ) then T̃F (f̃)(µ) ≥ Ṽ (µ) as
well.7

Since TL is monotone then TL(f)(µ, n) ≥ TL(V )(µ) = V (µ) for all n = 0, ..., n̄− 1. As for
the first argument of T̃F (f̃)(µ), it is the maximum of two arguments:

δ
∑
s∈S

f(s)QN
(
s, (µ, 0)

)
=

[p+ (1− p)µ]δf

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ, 0

)
+ (1− p)(1− µ)δf(1− λ, n̄) ≥

[p+ (1− p)µ]δV

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)
+ (1− p)(1− µ)δV (1− λ) ≥︸︷︷︸

V convex

δV ((2λ− 1)µ+ 1− λ) = V N (µ)

and,

(2µ− 1)x+ δ
∑
s∈S

f(s)QI
(
s, (µ, 0)

)
=

(2µ− 1)x+ p

[
δ
∑
s∈S

f(s)QN
(
s, (µ, 0)

)]
+ (1− p)µδf(λ, 0)+

(1− p)(1− µ)δ
[
pf(1− λ, 0) + (1− p)f(1− λ, n̄)

]
≥

(2µ− 1)x+ pV N (µ) + (1− p)µδV (λ) + (1− p)(1− µ)δV (1− λ) = V I(µ)

7If f̃ ≥ Ṽ implies that T̃F (f̃) ≥ Ṽ then T̃nF (f̃) ≥ Ṽ for all n and in the limit Ũ = lim
n→∞

T̃nF (f̃) ≥ Ṽ .
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Thus, the first argument of T̃F (f̃)(µ) is greater than max{V N (µ), V I(µ)} = V (µ).

3. I will prove the claim by induction on n.

For n = 0:

Following Lemma 12 it suffices to prove the claim for W (since U(µ, 0) = W (µ) + aµ+ b,
the unique threshold of W will also be the unique threshold of U(µ, 0)). The existence of a
threshold for W follows from similar arguments to those given in the proof of Proposition
3, i.e., it can be shown that there exists MF

0 ∈ (1− λ, 0.5) such that W I(µ) ≥WN (µ) for
all µ ∈ [MF

0 , 1] and that W is linear in this segment. Specifically, it can be shown that

W (µ) =

max

{
[p+(1−p)µ]δW

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)
+(1−p)(1−µ)δW (1−λ) , αFµ+βF

}

where αF = x(2−δ−δp2)−(1−δ)(1−p2)W (0)
(1−δλ)(1−δp2)+δp2(1−δ)(1−λ)

, βF = x−(1−δλ)αF

1−δ andMF
0 = x−(1−p)[W (0)−βF ]

(1+p)x−(1−p)[W (0)−βF ]
.

It remains to show that MF
0 is the unique threshold. Denote IGF (µ, 0) = W I(µ)−WN (µ).

I will show that IGF is increasing in µ which will imply that MF
0 is the unique belief that

nullifies it. Since W is convex, αF is the maximal slope of any arch of W . Thus,

[WN (µ+ ∆)−WN (µ)]/δ =

[p+ (1− p)(µ+ ∆)
]
W

(
(2λ− 1)

µ+ ∆

p+ (1− p)(µ+ ∆)
+ 1− λ

)
−[

p+ (1− p)µ
]
W

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)
− (1− p)∆W (1− λ) =

(1− p)∆
[
W

(
(2λ− 1)

µ+ ∆

p+ (1− p)(µ+ ∆)
+ 1− λ

)
−W (1− λ)

]
+[

p+(1−p)µ
] [
W

(
(2λ− 1)

µ+ ∆

p+ (1− p)(µ+ ∆)
+ 1− λ

)
−W

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)]
≤

(1− p)∆αF (2λ− 1)
µ+ ∆

p+ (1− p)(µ+ ∆)
+αF (2λ− 1)

p∆

p+ (1− p)(µ+ ∆)
= αF (2λ− 1)∆

Now,

IGF (µ+∆, 0)−IGF (µ, 0) = (1+p)x∆+(1−p)
[
W (1)−W (0)

]
∆−(1−p)

[
WN (µ+∆)−WN (µ)

]
≥

(1 + p)x∆ + (1− p)
[
αF + βF −W (0)

]
∆− (1− p)δαF (2λ− 1)∆ ≥

(1− p)αF∆− (1− p)δαF (2λ− 1)∆ = (1− p)αF∆
[
1− δ(2λ− 1)

]
≥ 0

where the penultimate inequality is due to fact that MF
0 < 0.5 so W (0)− βF ≤ (1 + p)x.

For n = 1, ..., n̄:

I will prove that U(µ, n) has a unique threshold for investment MF
n ∈ (1−λ, 0.5) and that

24



U(µ, n) is TLC . Recall that:

U(µ, n) = max
{
UN (µ, n), U I(µ, n)

}
=

max

{
δU
(

(2λ− 1)µ+ 1− λ, n− 1
)
,

(2µ−1)x+pδU
(

(2λ−1)µ+1−λ, n−1
)

+δ(1−p)[µU(λ, n−1)+(1−µ)U(1−λ, n−1)]

}

Since U(µ, n− 1) is convex in µ then for µ ≥ 0.5,

(1−p)δU
(

(2λ−1)µ+1−λ, n−1
)
≤ (2µ−1)x+δ(1−p)

[
µU(λ, n−1)+(1−µ)U(1−λ, n−1)

]
This means that there exists MF

n < 0.5 such that Follower invests in (µ, n) for µ ≥ MF
n .

The uniqueness of MF
n follows from the fact that U(µ, n − 1) is convex, using similar

arguments to those given in the proof of the uniqueness of ML (Proposition 3).

It remains to show that U(µ, n) is TLC. For µ ≥MF
n ,

U(µ, n) = (2µ−1)x+pδU
(

(2λ−1)µ+1−λ, n−1
)

+δ(1−p)
[
µU(λ, n−1)+(1−µ)U(1−λ, n−1)

]
Since U(µ, n − 1) is TLC with some threshold M then U(µ, n) is TLC with threshold

max
{
MF
n ,

M−(1−λ)
2λ−1

}
. In fact, by induction we get that U(µ, n) is TLC with threshold

max
{
MF
n ,

MF
n−1−(1−λ)

2λ−1 , ..., 0.5− 0.5−MF
0

(2λ−1)n

}
.

4. As aforesaid, for all n = 1, ..., n̄ we can write

U(µ, n) = TLU(µ, n− 1) = (TL)nU(µ, 0) (7)

where TL is the mapping whose fixed point is V . This means that if we extend definition
(7) to all n ∈ N (holding U(0, n) fixed) then lim

n→∞
U(µ, n) = lim

n→∞
(TL)nU(µ, 0) = V (µ).8

A.3 Proof of Proposition 5 (Free-Riding and Gradual Entry)

Unfortunately, in the stochastic state setting agents’ thresholds cannot be derived analytically.
The main difficulty is that an agent’s value in µ = 0 is not derived analytically since it depends
on the number of periods until the agent resumes investment which in turn depends on the
value at µ = 0. In the constant state model this was not an issue since the agent never returned
to the market after leaving so the value at µ = 0 was zero. Therefore, the proof of free-riding
in the stochastic case is based on an approximation of thresholds to the static state thresholds.
Specifically, Lemma 14 shows that agents’ thresholds are continuous in λ at λ = 1. Thus we
can use the analytical solutions of agents’ thresholds at λ = 1 to show that the free-riding effect
arises at the proximity of λ = 1. Lemmas 15 and 16 set bounds on the thresholds to facilitate
the proof.

Lemma 14. Think of Loner’s threshold an Follower’s threshold when Loner is in the market
as functions of λ and denote them by ML(λ) and MF

0 (λ), respectively. These thresholds are
continuous in λ at λ = 1.

8Banach’s fixed point theorem guarantees that TnL (f)→ V for any f . See Footnote 6.
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Proof. Loner’s threshold: Consider the value of V at a belief µ as a function of λ as well
and denote it by V (µ;λ). V (µ;λ) is convex in µ and bounded by the present value of a constant
payment x. It follows that

V (0;λ) = δV (1− λ;λ) ≤ (1− λ)δV (1;λ) + λδW (0;λ) ≤ δ(1− λ)
x

1− δ
+ λδV (0;λ)

Thus, 0 ≤ V (0;λ) ≤ δ(1−λ)x
(1−δλ)(1−δ) for all λ and equality holds for λ = 1. It follows that V (0;λ)

is continuous in λ at (0; 1) and its value is zero at this point. Consequently, the following
expression is also continuous at λ = 1:

DL(λ) ≡ V (0;λ)− βL = V (0;λ)− x− (1− δλ)αL

1− δ
=

V (0;λ)

[
1− (1− δλ)(1− p)

(1− δλ)(1− δp) + δp(1− δ)(1− λ)

]
+

1− δλ− δp(1− λ)

(1− δλ)(1− δp) + δp(1− δ)(1− λ)
x (8)

Finally, it follows that ML(λ) = x−(1−p)DL(λ)
(1+p)x−(1−p)DL(λ)

is continuous at λ = 1.

Follower’s threshold: Using similar arguments it can be shown that W (0;λ) is continuous

at λ = 1 which implies that DF (λ) ≡ W (0, λ) − βF and MF
0 (λ) = x−(1−p)DF (λ)

(1+p)x−(1−p)DF (λ)
are also

continuous at that point.

Lemma 15. Denote Dn = U(0, n)− βn and yn = x−(1−p)Dn
(1+p)x−(1−p)Dn for all n = 0, ..., n̄+ 1.

1. y0 = MF
0 .

2. yn is the belief that solves αnyn + βn = δ
(
αn−1[(2λ− 1)yn + 1− λ] + βn−1

)
and it can

be interpreted as follows. If Follower knew that if he would observe a signal 0 in all n
consecutive periods he will be investing in all of them (and thus will be on the linear part of
U in all the following n periods), then yn is the belief that makes him indifferent between
investing and not investing today.

3. MF
n ≥ yn .

Proof. 1. follows trivially from the solutions of MF . 2. follows from the recursive structure of
αn and βn:9 (

αn

βn

)
= δ

(
λ− p(1− λ) 1− p
p(1− λ) p

)(
αn−1

βn−1

)
+

(
2x− (1− p)U(0, n)
−x+ (1− p)U(0, n)

)
(9)

9Since U(µ, n) = UI(µ, n) is linear on [0.5, 1] for all n, the recursive structure can be achieved by solving

αnµ+βn = UI(µ, n) = (2µ−1)x+pδ
(
αn−1[(2λ−1)µ+1−λ]+βn−1

)
+(1−p)δ

[
µ(αn+βn)+(1−µ)U(1−λ, n−1)

]
for µ = 0.5, 1.
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To prove 3. I need to show that U I(yn, n) ≤ UN (yn, n):

U I(yn, n) = (2yn − 1)x+ pUN (yn, n) + (1− p)δ
[
ynU(λ, n− 1) + (1− yn)U(1− λ, n− 1)

]
=

(2yn − 1)x+ pδ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
+

(1− p)δ
[
ynU(λ, n− 1) + (1− yn)U(1− λ, n− 1)

]
+

pUN (yn, n)− pδ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
=︸︷︷︸

Eq. (9)

αnyn + βn+

pUN (yn, n)− pδ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
=︸︷︷︸

Lemma 15.2

δ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
+

pUN (yn, n)− pδ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
=

pUN (yn, n) + (1− p)δ
[
αn−1

(
(2λ− 1)yn + 1− λ

)
+ βn−1

]
≤

pUN (yn, n) + (1− p)δU
(

(2λ− 1)yn + 1− λ, n− 1
)

= UN (yn, n)

Lemma 16. ML(λ) ≤ (1−δλ)(1−δ)+δ(1−λ)(2−δ−p)
(2−δ−δp)[1−δ(2λ−1)] ≡ M̄L(λ)

Proof. Following Equation (8) and due to the fact that V (0) ≥ 0, I can boundDL(λ) from below:

DL(λ) ≥ 1−δλ−δp(1−λ)
(1−δλ)(1−δp)+δp(1−δ)(1−λ)x. Now, ML(λ) = x−(1−p)DL(λ)

(1+p)x−(1−p)DL(λ)
≤ (1−δλ)(1−δ)+δ(1−λ)(2−δ−p)

(2−δ−δp)[1−δ(2λ−1)] .

I now turn to the proof of Proposition 5:

Proposition 5. (Free-Riding and Gradual Entry)

Assume both agents share the same belief and Loner is out of the market. If λ is close
enough to 1 then Follower will enter the market strictly after Loner.

Proof.
Loner will start investing in exactly n periods if and only if his belief today is in the region[

0.5− 0.5−ML

(2λ−1)n , 0.5−
0.5−ML

(2λ−1)n−1

)
. Following Lemma 15, in order to show that Follower will not

enter before that, it suffices to show that zn−1 ≡ 0.5 − 0.5−ML

(2λ−1)n−1 ≤ yn for all n = 0, ..., n̄ + 1.

The proof will be conducted by induction.

For n=0:
For the purpose of this proof denote thresholds as functions of λ, i.e., ML(λ) and MF

0 (λ).
I need to show that (2λ− 1)ML(λ) + (1− λ) ≤MF (λ) for λ close enough to 1. The inequality
is strong for λ = 1 since ML(1) = 1−δ

2−δ(1+p) <
1−δp

2−δp(1+p) = MF
0 (1) (Propositions 1 and 2). Thus,

from the continuity of thresholds at λ = 1 (Lemma 14), it follows that the inequality holds in
an environment of λ = 1.

For n+ 1 ≥ 1:
Note that yn+1 = x−(1−p)Dn+1

(1+p)x−(1−p)Dn+1 ≥ zn if and only if Dn+1 ≤ 1−(1+p)zn

(1−p)(1−zn)x.
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Dn+1 = x− pδ(1− λ)αn + pδ
[
U(1− λ, n)− βn

]
=

x+ pδ
[
U(0, n)− βn

]
− pδ(1− λ)

[
αn − U(1− λ, n)− U(0, n)

1− λ

]
≤︸︷︷︸

U is convex

x+ pδ
[
U(0, n)− βn

]
− pδ(1− λ)

[
αn − αn0.5 + βn − U(0, n)

0.5

]
=

x+ pδ(2λ− 1)
[
U(0, n)− βn

]
= x+ pδ(2λ− 1)Dn ≤︸︷︷︸

ind. hyp.

x

[
1 + pδ(2λ− 1)

1− (1 + p)zn−1

(1− p)(1− zn−1)

]
=︸︷︷︸

zn−1=(2λ−1)zn+1−λ

=

x

1 + pδ(2λ− 1)
1− (1 + p)

[
(2λ− 1)zn + 1− λ

]
(1− p)

[
λ− (2λ− 1)zn

]


It thus remains to show that:

1 + pδ(2λ− 1)
1− (1 + p)

[
(2λ− 1)zn + 1− λ

]
(1− p)

[
λ− (2λ− 1)zn

] ≤ 1− (1 + p)zn

(1− p)(1− zn)

Rearranging this inequality I get that I need to prove:

∀n ∈ {1, ..., n̄+ 1} g(zn) ≡ 1− δ(2λ− 1) + pδ(2λ− 1)
zn + 1−λ

2λ−1

1− zn + 1−λ
2λ−1

− zn

1− zn
≥ 0 (10)

I will prove that g(z) ≥ 0 for all z ∈ [0,ML]. Note that g′(z) = pδ

[ λ
2λ−1

−z]
2 − 1

[1−z]2 ≤ 0 since

pδ ≤ 1 and λ
2λ−1 ≥ 1 ≥ z. Thus, in order to prove (10) it suffices to show that g(M̄L) ≥ 0

where M̄L is the bound defined in Lemma 16.

g(z) ≥ 0 if and only if

[
1−δ(2λ−1)

] [
1− z +

1− λ
2λ− 1

] [
1−z

]
+pδ(2λ−1)

[
z +

1− λ
2λ− 1

] [
1−z

]
−z
[
1− z +

1− λ
2λ− 1

]
≥ 0

Rearranging this inequality yields:[
1− δ −

(
2− δ(1 + p)

)
z
]

︸ ︷︷ ︸
A(z)

+ (1− λ)
1− 2z

1− z

[
1

2λ− 1
+ δ(1 + p)(1− z)

]
︸ ︷︷ ︸

B(z)

≥ 0 (11)

Now,

A(M̄L) = 1− δ − (1− δλ)(1− δ) + δ(1− λ)(2− δ − p)
1− δ(2λ− 1)

=

(1− δλ)(1− δ)− δ(1− λ)(2− δ − p)
1− δ(2λ− 1)
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B(M̄L) = (1− λ)
δ(1− δ)(1− p)(2λ− 1)

(1− δλ)(1− δp) + δp(1− δ)(1− λ)

[
1

2λ− 1
+ δ(1 + p)(1− M̄L)

]
≥

(1− λ)
δ(1− δ)(1− p)(2λ− 1)

1− δλ+ (1− δ)(1− λ)

[
1

2λ− 1
+ 0

]
=
δ(1− δ)(1− p)(1− λ)

1− δ(2λ− 1)

Thus,

A(M̄L) +B(M̄L) ≥ (1− δλ)(1− δ)− δ(1− λ)(2− δ − p) + δ(1− δ)(1− p)(1− λ)

1− δ(2λ− 1)
=

(1− δ)2 − δ2(1− p)(1− λ)

1− δ(2λ− 1)

It follows that inequality (11) is satisfied for M̄L if (1− p)(1− λ) ≤
(

1−δ
δ

)2
.

A.4 Proofs on Private vs. Public Information

A.4.1 Proof of Proposition 8

Similarly to the proof of Proposition 4.2, in order to show that Ũ(µ) =
(
U(µ, 0), ..., U(µ, n̄)

)′
is

smaller than ŨB(µ) ≡
(
UB(µ, 0), ..., UB(µ, n̄)

)′
, it suffices to show that if f̃(µ) = (f(µ, 0), ..., f(µ, n̄))′ ≤

ŨB(µ) then T̃F (f̃)(µ) ≤ ŨB(µ) as well (see proof of Proposition 4.2 for more details).
Since TL is monotone then T̃F (f̃(µ))n = TL(f(µ, n− 1)) ≤ TL(UB(µ, n− 1)) = UB(µ, n) for

all n = 1, ..., n̄. As for the first argument of T̃F (f̃)(µ), it is the maximum of two arguments:

δ
∑
s∈S

f(s)QN
(
s, (µ, 0)

)
=

[p+ (1− p)µ]δf

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ, 0

)
+ (1− p)(1− µ)δf(1− λ, n̄) ≤

[p+ (1− p)µ]δUB

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ, 0

)
+ (1− p)(1− µ)δUB(1− λ, n̄) ≤︸︷︷︸

UB convex

pδUB

(
(2λ− 1)µ+ 1− λ, 0

)
+ (1− p)δ

[
µUB(λ, 0) + (1− µ)UB(1− λ, n̄)

]
= UNB (µ, 0)

and,

(2µ− 1)x+ δ
∑
s∈S

f(s)QI
(
s, (µ, 0)

)
=

(2µ− 1)x+ p

[
δ
∑
s∈S

f(s)QN
(
s, (µ, 0)

)]
+ (1− p)µδf(λ, 0)+

(1− p)(1− µ)δ
[
pf(1− λ, 0) + (1− p)f(1− λ, n̄)

]
≤

(2µ− 1)x+ pUNB (µ, 0) + (1− p)µδUB(λ, 0)+

(1− p)(1− µ)δ
[
pUB(1− λ, 0) + (1− p)UB(1− λ, n̄)

]
= U IB(µ, 0)

Thus, the first argument of T̃F (f̃)(µ) is smaller than max{UNB (µ, 0), U IB(µ, 0)} = UB(µ, 0).
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A.4.2 Proof of Proposition 9

The proof requires three steps:

1. MFB
0 (λ) is continuous at λ = 1

2. yBn ≡ x−(1−p)[UB(0,n)−βBn]
(1+p)x−(1−p)[UB(0,n)−βBn]

≤MFB
n

3. yBn ≥ zn−1 ≡ 0.5− 0.5−ML

(2λ−1)n−1 for λ close enough to 1.

The proofs are similar to the ones in the private information case (Appendix A.3) so I leave
out some details.

1. Define
WB(µ) = max{WN

B (µ),W I
B(µ)}

where,

WN
B (µ) = pδWB

(
(2λ− 1)µ+ 1− λ

)
+ (1− p)δ

[
µWB(λ) + (1− µ)WB(1− λ)

]
W I
B(µ) = (2µ− 1)x+ pWN

B (µ) + (1− p)δ
[
µWB(λ) + (1− µ)WB(1− λ)

]
Similarly to the proof of Proposition 4 (Appendix A.2) it can be shown that WB has the

same threshold as UB and it is equal to MFB
0 = x−(1−p)[WB(0)−βFB ]

(1+p)x−(1−p)[WB(0)−βFB ]
where βFB =

x−(1−δλ)αFB

1−δ and αFB = x(2−δ−δp2)−(1−δ)(1−p2)WB(0)
(1−δλ)(1−δp2)+δp2(1−δ)(1−λ)

.

Similarly to the arguments given in Appendix A.3 it can be shown that if we think of
WB(0) as a function of λ then it is continuous at λ = 1, and so is MFB

0 .

2. Follows from the proof of Lemma 15 by replacing U with UB.

3. The proof is conducted by induction. For n = 0, due to the continuity of MF
0 (λ) and

ML(λ) at λ = 1, it suffices to show that ML(1) = 1−δ
2−δ(1+p) < MFB

0 (1). Note that if

λ = 1 then WB(0) = 0. By inserting this in the solution of MFB
0 from item 1 we get that

MFB
0 (1) = 1−δp

2−δp(1+p) which is in fact larger than ML(1). The proof for n ≥ 1 follows from

the proof of Proposition 5 (Appendix A.3) by replacing U, αn and βn with UB, αBn and
βBn.

A.4.3 Proof of Proposition 10

1. The fact that MFB
0 ≤MF

0 will follow from two claims: (1) WB ≥W and (2) WB(0)−βB ≥
W (0)− βF .

(1) Denote by TB the mapping whose fixed point is WB. It suffices to show that if f ≥W
then TB(f) ≥W as well (see footnote 7). TB(f) is the maximum of two elements:

fN (µ) ≡ pδf
(

(2λ− 1)µ+ 1− λ
)

+ (1− p)δ
[
µf(λ) + (1− µ)f(1− λ)

]
≥

pδW
(

(2λ− 1)µ+ 1− λ
)

+ (1− p)δ
[
µW (λ) + (1− µ)W (1− λ)

]
≥︸︷︷︸

Wconvex

[p+(1−p)µ]δW

(
(2λ− 1)

µ

p+ (1− p)µ
+ 1− λ

)
+(1−p)(1−µ)δW (1−λ) = WN (µ)
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f I(µ) ≡ (2µ− 1)x+ pfN (µ) + δ(1− p)
[
µf(λ) + (1− µ)f(1− λ)

]
≥

(2µ− 1)x+ pWN (µ) + δ(1− p)
[
µW (λ) + (1− µ)W (1− λ)

]
= W I(µ)

It follows that TB(f)(µ) = max{fN (µ), f I(µ)} ≥ max{WN (µ),W I(µ)} = W (µ)

(2) Using (1):

WB(0)− βB = WB(0)− x− (1− δλ)αB

1− δ
=

WB(0)

[
1− (1− δλ)(1− δ)(1− p2)

(1− δλ)(1− δp2) + δp2(1− δ)(1− λ)

]
+

1− δλ− δp2(1− λ)

(1− δλ)(1− δp2) + δp2(1− δ)(1− λ)
x ≥

W (0)

[
1− (1− δλ)(1− δ)(1− p2)

(1− δλ)(1− δp2) + δp2(1− δ)(1− λ)

]
+

1− δλ− δp2(1− λ)

(1− δλ)(1− δp2) + δp2(1− δ)(1− λ)
x = W (0)− βF

2. If λ = 1 then claim (2) holds with equality since W (0) = WB(0) = 0. In this case
MFB

0 = MF
0 = 1−δp

2−δp(1+p) .

3. Assume that Loner entered in some period that we normalize to 0. In equilibrium all agents
share the same belief at this point, call it µ. Consider n periods after Loner’s entry, Loner
is in the market and both types of followers were out at n− 1. Since Follower A observed
Loner stay in the market for n periods, his belief in period n is χn ≡ µ

pn+(1−pn)µ . As

for Follower B, if Loner received a good signal πG in period n then Follower B updates
his belief to λ and enters, i.e., he enters (weakly) before Follower A. Otherwise, so far
Loner received only uninformative signals of zero and Follower B has a belief of ζn(λ) ≡
0.5− (2λ− 1)n(0.5− µ). I will show that

MF
0 (λ)− χn ≤MFB

0 (λ)− ζn(λ) (12)

This implies that if Follower A doesn’t enter in n (i.e., MF
0 > χn), then Follower B also

doesn’t enter (i.e., MFB
0 > ζn(λ)). Recall that MF

0 = MFB
0 when λ = 1. Furthermore,

ζn(1) = µ < µ
pn+(1−pn)µ = χn. Thus, inequality (12) is strong when λ = 1 and from the

continuity of all elements (similarly to Lemma 14 it can be shown that MFB
0 is continuous

at λ = 1), it holds in an environment of λ = 1.

A.4.4 Proof of Corollary 11

Following Proposition 10.4 I need to show that the probability that Loner observes πG before
Follower A enters is smaller than 0.5. Assume Follower A enters k periods after Loner (in the
leading example in the body of the paper k = 2). Let pθk denote the probability Loner observed
πG in those k periods, without observing πB before that, given that the state was θ when he
entered:

pθk = Pr
(
πLt = ... = πLt+i−1 = 0 , πLt+i = πGfor some i ≤ k

∣∣∣θt = θ, Loner entered in t
)
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I need to show that
∑

θ=G,B

pθk Pr
(
θt = θ|Loner entered in t) < 0.5 . Note that pGk and pBk

have the following recursive structure:

pGk =1− p+ p
[
λpGk−1 + (1− λ)pBk−1

]
pBk =p

[
λpBk−1 + (1− λ)pGk−1

]
pG0 =pB0 = 0

The solution for this system is:

pGk =
2− pk(1 + p)− (2λ− 1)kpk(1− p)− 2λp(1− pk)

2
[
1− (2λ− 1)p

]
pBk =

2p− pk(1 + p) + (2λ− 1)kpk(1− p)− 2λp(1− pk)
2
[
1− (2λ− 1)p

]
These expressions increase in k so pGk ≤

1−p+(1−λ)p
1−(2λ−1)p , p

B
k ≤

(1−λ)p
1−(2λ−1)p . Since in equilibrium

Loner enters when the probability for state G is smaller than 0.5,∑
θ=G,B

pθk Pr
(
θt = θ|Loner entered in t) < 0.5

1− p+ (1− λ)p

1− (2λ− 1)p
+ 0.5

(1− λ)p

1− (2λ− 1)p
= 0.5
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